Answered

Pinadadali ng Imhr.ca ang paghahanap ng mga sagot sa iyong mga katanungan kasama ang isang aktibong komunidad. Tuklasin ang komprehensibong mga solusyon sa iyong mga tanong mula sa mga bihasang propesyonal sa iba't ibang larangan sa aming platform. Kumonekta sa isang komunidad ng mga eksperto na handang magbigay ng eksaktong solusyon sa iyong mga tanong nang mabilis at eksakto.

A geologist measured a 40-degree angle of elevation to the top of a mountain. After moving 0.5m farther away, the angle of elevation was 34 degrees. How high is the top of the mountain?

Sagot :

this can be solve by functions of a right triangle the tan(theta) which is equal to opposite side/ adjacent side
which the opposite side is the height that we looking for.
and the adjacent side is the distance from his feet to the bottom of the mountain

let h the height of the mountain
and d is the distance of the person from the mountain from the first measurement

at first situation measurement
tan (40) = h/d
and make d in terms of h
by algebra skills
d = h/tan (40)

at the second situation he move 0.5m farther so it will plus to the distance at the first situation
then it becomes
tan (34) = h/d +0.5
then manipulate the equation
you have the value of d at the first situation so just substitute the d
then it becomes
tan (34) = h / (h/tan40) + 0.5
then solve the h by your algebraic skills
tan34 (h/tan40 + 0.5) =h
distribute the tan(34)
h tan34/tan40 + (0.5)tan34 = h
combine like terms
0.5(tan34) = h (1 - tan34/tan40 )
then you get the h
h = 0.5(tan34)/(1 - tan34/tan40 )

h = 1.719 m
and tell your teacher that it is not mountain it is punso haha joke..

I hope it helps you !