Answered

Pinadadali ng Imhr.ca ang paghahanap ng mga sagot sa iyong mga katanungan kasama ang isang aktibong komunidad. Tuklasin ang mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming komprehensibong Q&A platform. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa dedikadong komunidad ng mga eksperto sa aming Q&A platform.

Joe wants to fence in his rectangular garden.
the length of the garden is 9 5/6 yards.
the width is 5 1/4 yards.
How many yards of fencing does he need?


Sagot :

domini
[tex]Fencing\ problems\ are\ what\ we\ can\ conclude\ in\ a\ \\ real\ life\ perimeters\ problems. \\ \\ In\ order\ to\ solve\ this,\ let's\ get\ first\ the\ formula \\ of\ the\ perimeter\ of\ the\ rectangle. \\ \\ ^{Formula:} \\ _{Perimeter}=2(l)+2(w) \\ \\ ^{Given:} \\ _{length}=9 \frac{5}{6}\ yards \\ \\ _{width}=5 \frac{1}{4}\ yards [/tex]

[tex]\bold{Equation:} \\ \\ Perimeter=2(l)+2(w) \\ \\ Perimeter=2(\ 9\frac{5}{6}\ yards )+2(\ 5\frac{1}{4}\ yards) \\ \\ Solve\ first\ the\ total\ length\ or\ \underline{TL} \\ \\ TL=2(\ 9 \frac{5}{6}\ yards) \\ \\ TL= \frac{2}{1}\cdot\ 9 \frac{5}{6}\ yards \\ \\ TL= \frac{2}{1}\ \cdot\ [ \frac{54+5}{6}\ yards= \frac{59}{6}\ yards] \\ \\ TL= \frac{^{1}\not{2}}{1}\ \cdot\ \frac{59}{\not6_{3}}\to \frac{59}{3} \\ \\ \boxed{\bold{TL=\ 19 \frac{2}{3}\ yards}} [/tex]

[tex]Solving\ for\ total\ width\ or\ \underline{TW} \\ \\ TW=2\ (5\ \frac{1}{4}\ yards) \\ \\ TW= \frac{2}{1}\ \cdot \ 5\ \frac{1}{4}\ yards \\ \\ TW= \frac{2}{1}\ \cdot\ \ [ \frac{20+1}{4}\ yards= \frac{21}{4}\ yards] \\ \\ TW= \frac{^{1}\not2}{1}\ \cdot\ \frac{21}{\not4_{2}}\to \frac{21}{2}\ yards \\ \\ \boxed{\bold{TW=10 \frac{1}{2}\ yards}} [/tex]


[tex]Final\ solution: \\ Perimeter=2(l)+2(w) \\ \\ Perimeter=19 \frac{2}{3}\ yards+\ 10 \frac{1}{2}\ yards \\ \\ Perimeter= \frac{59}{3}\ yards\ +\ \frac{21}{2}\ yards\ \ \ \ \ |\ ^{Change\ the\ following\ fractions\ to} \\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |\ \ ^{improper\ fractions.} \\ \\ Get\ their\ common\ denominator: \\ \\ \frac{19}{3}\ yards \to\ \frac{118}{6}\ yards \\ \\ \frac{21}{2}\ yards \to\ \frac{63}{6}\ yards [/tex]


[tex]Perimeter= \frac{118}{6}\ yards +\ \frac{63}{6}\ yards \\ \\ Perimeter= \frac{181}{6}\ yards \\ \\ \boxed{\boxed{\bold{Perimeter=\ 30\ \frac{1}{6}\ yards}}} \\ \\ \\ \\ Hope\ it\ Helps :) \\ Domini [/tex]
Salamat sa pagpili sa aming plataporma. Kami ay nakatuon sa pagbibigay ng pinakamahusay na mga sagot para sa lahat ng iyong mga katanungan. Bisitahin muli kami. Umaasa kaming naging kapaki-pakinabang ang aming mga sagot. Bumalik anumang oras para sa higit pang tumpak na mga sagot at napapanahong impormasyon. Mahalaga ang iyong kaalaman. Bumalik sa Imhr.ca para sa higit pang mga sagot at impormasyon.