Makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga katanungan sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Sumali sa aming platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang network ng mga bihasang propesyonal.
Sagot :
An arithmetic progression is a sequence in which they have a common difference. A sequence is shown as:
[tex]a_1,a_2,a_3,...,a_n[/tex]
[tex]a_2-a_1=a_3-a_2=...=a_n-a_n_-_1=d [/tex]
in which d is the common difference
So we know that:
Let us make[tex]a_1=m, a_2=n, a_3=o, a_4=p[/tex]
[tex]m+n+o+p=18[/tex]
[tex]m^2+n^2+o^2+p^2=326[/tex]
Remember that this is an arithmetic progression so the terms are respectively
[tex]m, m+d, m+2d, m+3d[/tex] or
[tex]n-d, n, n+d, n+2d[/tex]
Since d is their common difference
[tex](n-d)+n+(n+d)+(n+2d)=4n+2d=18 \\ n= \frac{9-d}{2} [/tex]
We plug in the values to the second equation in the given
[tex] (\frac{9-3d}{2}) ^2+ (\frac{9-d}{2}) ^2+ (\frac{9+d}{2}) ^2+ (\frac{9+3d}{2}) ^2=326[/tex]
[tex]\frac{2(9^2+(3d)^2)+2(9^2+d^2)}{4} =326 \\ \frac{2*9^2+9d^2+d^2}{2} =326 \\ 81+5d^2=326 \\ 5d^2=245 \\ d^2=49 \\ d=+7 , -7[/tex]
The squareroot of 49 is either positive or negative 7.
So remember that
[tex]n= \frac{9-d}{2} [/tex]
If d=7
[tex]n= \frac{9-7}{2} =1[/tex]
When n=1
m=1-7=-6
n=1
o=1+7=8
p=8+7=15
If d=-7
[tex]n= \frac{9-(-7)}{2} = \frac{16}{2} =8[/tex]
When n=8
m=8-(-7)=15
n=8
o=8-7=1
p=1-7=-6
Therefore the numbers are -6, 1, 8 and 15
[tex]a_1,a_2,a_3,...,a_n[/tex]
[tex]a_2-a_1=a_3-a_2=...=a_n-a_n_-_1=d [/tex]
in which d is the common difference
So we know that:
Let us make[tex]a_1=m, a_2=n, a_3=o, a_4=p[/tex]
[tex]m+n+o+p=18[/tex]
[tex]m^2+n^2+o^2+p^2=326[/tex]
Remember that this is an arithmetic progression so the terms are respectively
[tex]m, m+d, m+2d, m+3d[/tex] or
[tex]n-d, n, n+d, n+2d[/tex]
Since d is their common difference
[tex](n-d)+n+(n+d)+(n+2d)=4n+2d=18 \\ n= \frac{9-d}{2} [/tex]
We plug in the values to the second equation in the given
[tex] (\frac{9-3d}{2}) ^2+ (\frac{9-d}{2}) ^2+ (\frac{9+d}{2}) ^2+ (\frac{9+3d}{2}) ^2=326[/tex]
[tex]\frac{2(9^2+(3d)^2)+2(9^2+d^2)}{4} =326 \\ \frac{2*9^2+9d^2+d^2}{2} =326 \\ 81+5d^2=326 \\ 5d^2=245 \\ d^2=49 \\ d=+7 , -7[/tex]
The squareroot of 49 is either positive or negative 7.
So remember that
[tex]n= \frac{9-d}{2} [/tex]
If d=7
[tex]n= \frac{9-7}{2} =1[/tex]
When n=1
m=1-7=-6
n=1
o=1+7=8
p=8+7=15
If d=-7
[tex]n= \frac{9-(-7)}{2} = \frac{16}{2} =8[/tex]
When n=8
m=8-(-7)=15
n=8
o=8-7=1
p=1-7=-6
Therefore the numbers are -6, 1, 8 and 15
Bisitahin muli kami para sa mga pinakabagong at maaasahang mga sagot. Lagi kaming handang tulungan ka sa iyong mga pangangailangan sa impormasyon. Pinahahalagahan namin ang iyong oras. Mangyaring bumalik anumang oras para sa pinakabagong impormasyon at mga sagot sa iyong mga tanong. Ang iyong mga tanong ay mahalaga sa amin. Balik-balikan ang Imhr.ca para sa higit pang mga sagot.