Tinutulungan ka ng Imhr.ca na makahanap ng maaasahang mga sagot sa lahat ng iyong mga katanungan mula sa mga eksperto. Sumali sa aming platform upang makakuha ng mapagkakatiwalaang sagot sa iyong mga tanong mula sa isang malawak na komunidad ng mga eksperto. Maranasan ang kadalian ng paghahanap ng eksaktong sagot sa iyong mga tanong mula sa isang malawak na komunidad ng mga eksperto.
Sagot :
Please check the picture to understand the solution better.
The Pythagorean Theorem which applies to right triangles states that:
[tex]a^2+b^2=c^2[/tex]
a and b are the lengths of the legs while c is the length of the hypotenuse.
In the Cartesian plane they are:
[tex]x_a-x_b=a[/tex]
[tex]y_a-y_b=b[/tex]
The points are have coordinates [tex](x,y)[/tex]
This means
[tex](x_a,y_a)[/tex] are the coordinates of the first point
and [tex](x_b,y_b)[/tex] are the coordinates of the second
So in the problem:
[tex](x_a,y_a)=(2,-2)[/tex] which are the coordinates of P
[tex](x_b,y_b)=(-1,2)[/tex] which are the coordinates of P
We substitute this to the Pythagorean theorem
[tex](2-(-1))^2+(-2-2)^2=c^2[/tex]
[tex]3^2+(-4)^2=c^2[/tex]
[tex]9+16=c^2 \\ 25=c^2 \\ 5=c[/tex]
The triangle that will be formed has a very common Pythagorean triple which is (3,4,5).
The length of the hypotenuse (or any length of a side) cannot be less than or equal to 0 so it cannot be -5.
Therefore the length of the line segment when you connect the two points is 5.
The Pythagorean Theorem which applies to right triangles states that:
[tex]a^2+b^2=c^2[/tex]
a and b are the lengths of the legs while c is the length of the hypotenuse.
In the Cartesian plane they are:
[tex]x_a-x_b=a[/tex]
[tex]y_a-y_b=b[/tex]
The points are have coordinates [tex](x,y)[/tex]
This means
[tex](x_a,y_a)[/tex] are the coordinates of the first point
and [tex](x_b,y_b)[/tex] are the coordinates of the second
So in the problem:
[tex](x_a,y_a)=(2,-2)[/tex] which are the coordinates of P
[tex](x_b,y_b)=(-1,2)[/tex] which are the coordinates of P
We substitute this to the Pythagorean theorem
[tex](2-(-1))^2+(-2-2)^2=c^2[/tex]
[tex]3^2+(-4)^2=c^2[/tex]
[tex]9+16=c^2 \\ 25=c^2 \\ 5=c[/tex]
The triangle that will be formed has a very common Pythagorean triple which is (3,4,5).
The length of the hypotenuse (or any length of a side) cannot be less than or equal to 0 so it cannot be -5.
Therefore the length of the line segment when you connect the two points is 5.
Salamat sa iyong pagbisita. Kami ay nakatuon sa pagtulong sa iyong makahanap ng impormasyon na kailangan mo, anumang oras na kailangan mo ito. Salamat sa iyong pagbisita. Kami ay nakatuon sa pagtulong sa iyong makahanap ng impormasyon na kailangan mo, anumang oras na kailangan mo ito. Imhr.ca ay nandito upang magbigay ng tamang sagot sa iyong mga katanungan. Bumalik muli para sa higit pang impormasyon.