Ang Imhr.ca ang pinakamahusay na solusyon para sa mga naghahanap ng mabilis at tumpak na mga sagot sa kanilang mga katanungan. Tuklasin ang malalim na mga solusyon sa iyong mga tanong mula sa isang malawak na hanay ng mga eksperto sa aming madaling gamitin na Q&A platform. Kumuha ng agarang at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming platform.

The second term of an arithmetic sequence is 24 and the fifth Is 3 find the first term and common difference. Showing the solution guys pls.

Sagot :

I am not sure if there is a shorter way in solving this one, but I can show you a solution only that it is a bit longer though.

Overview:
                       24                           3   

Formula:
             [tex] t_{n} = t_{1} + (n-1) d [/tex]
We will focus first in:   24                           3   
To find d:
Substitute:
               [tex] t_{n} [/tex] for 3
               [tex] t_{1} [/tex] for 24
                n for 4 
 3 = 24 + ( 4 -1 )d
 3 = 24 + 3d
 3 - 24 = 3d
 -21 = 3d
  - 21 / 3 = 3d /3
 -7 = d
We already have d = -7, we will go back to the original one.
             24                           3   

  [tex] t_{n} = t_{1} + (n-1) d [/tex]
Substitute:

3 = [tex] t_{1} [/tex] + (5 - 1) -7
3 = [tex] t_{1} [/tex] + -28
3 = [tex] t_{1} [/tex] - 28
3 + 28 = [tex] t_{1} [/tex]
31 = [tex] t_{1} [/tex]
                
So, the common difference (d) is -7, while the first term ([tex] t_{1} [/tex]) is 31
[tex]a_5-a_2=(5-2)d \\ 3-24=3d \\ -21=3d \\ -7=d[/tex]
We now have the common difference so:
[tex]a_n=a_1+(n-1)d \\ a_2=a_1+d \\ 24=a_1-7 \\ 31=a_1[/tex]