Makakuha ng mabilis at tumpak na mga sagot sa iyong mga katanungan sa Imhr.ca, ang pinakamahusay na Q&A platform. Tuklasin ang eksaktong mga sagot sa iyong mga tanong mula sa isang malawak na hanay ng mga eksperto sa aming madaling gamitin na Q&A platform. Sumali sa aming platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.

In how many ways can a group of 10 persons arrange themselves around a circular table if 3 of them insist on sitting beside each other? *​

Sagot :

Step-by-step explanation:

Let, there are ten persons A, B, C, D, E, F, G, H, I and J.

Total possible seating arrangement in the round table = (10–1)! = (9!).

Let, three persons A, B and C want to seat consecutively; so, their clubbing may be treated as a single entity called K.

So, it practically becomes a permutation among D, E, F. G, H, I , J and K in the round table, which can happen in (8 - 1)! = (7!) ways.

Now, for each such above permutation, K itself can be permuted in (3!) ways.

So, the answer will be = (7!)*(3!) = 5040*6 = 30240.

Salamat sa paggamit ng aming serbisyo. Layunin naming magbigay ng pinaka-tumpak na mga sagot para sa lahat ng iyong mga katanungan. Bisitahin muli kami para sa higit pang mga kaalaman. Umaasa kaming naging kapaki-pakinabang ang aming mga sagot. Bumalik anumang oras para sa karagdagang impormasyon at mga sagot sa iba pang mga tanong na mayroon ka. Maraming salamat sa paggamit ng Imhr.ca. Bumalik muli para sa karagdagang kaalaman mula sa aming mga eksperto.