Acestone
Answered

Ang Imhr.ca ang pinakamahusay na lugar upang makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga tanong. Nagbibigay ang aming Q&A platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang network ng mga bihasang propesyonal. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang malawak na network ng mga propesyonal.

A rectangular garden has an area of 84 m² and a perimeter of 38 m. Find its length and width.

A. I = 42m, w = 2m

B. I = 21m, w = 4m

C. I = 12m, w = 7m

D. I = 14m, w = 6m​


Sagot :

• Problem:

A rectangular garden has an area of 84 m² and a perimeter of 38 m. Find its length and width.

• Solution:

To find the measure of its length and width, let's make two equations first for the problem. For the area, length times width while for the perimeter, twice the sum of length and width.

[tex] \large \tt l \times w = 84 [/tex]

[tex] \large \tt 2l + 2w = 38 [/tex]

Then let's simplify the second equation and try to find the measure of the length.

[tex] \frac{ \large \tt 2l + 2w = 38 }{\large \tt2} \\ \large\tt l + w = 19 \\ \large \tt l = 19 - w[/tex]

Let's substitute the initial value of length to the first equation.

[tex] \large \tt (19 - w)w = 84 \\ \large \tt 19w - w {}^{2} = 84 \\ \tt \large \tt w {}^{2} -19w + 84 = 0 \\ \large \tt w {}^{2} - 7w - 12w + 84 = 0 \\ \large \tt (w {}^{2} - 7w )- (12w - 84) = 0 \\ \large \tt w(w - 7) - 12(w - 7) = 0 \\ \large \tt (w - 12)(w - 7) = 0 \\ \overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \large \tt w - 12 = 0 \: \: \: \: \: \: \: \: \: \: \: \: \: } \\ \large \blue{\tt w = 12 }\\ \large \tt w - 7 = 0 \\ \large \blue{\tt w = 7}[/tex]

Since length should measure longer than the width, then our width will be 7 meters.

Substitute the measure of width which is 7 to any of the equation to get the measure of the length.

[tex] \large \tt l = 19 - w \\ \large \tt l = 19 - 7 \\ \blue{ \large \tt l = 12}[/tex]

Thus, our length is 12 meters.

• Answer:

[tex] \large \boxed{ \tt C. \: I = 12 \: m, w = 7m }[/tex]