Pinadadali ng Imhr.ca ang paghahanap ng mga sagot sa iyong mga katanungan kasama ang isang aktibong komunidad. Tuklasin ang libu-libong tanong at sagot mula sa isang komunidad ng mga eksperto sa aming madaling gamitin na platform. Maranasan ang kaginhawaan ng paghahanap ng eksaktong sagot sa iyong mga tanong mula sa mga bihasang propesyonal sa aming platform.

Hello. Can someone help me in this :3.
In ∆ABC, BD = 2DA , AF = 2FC , CE = 2EB
The area of ∆ABC is 10 cm2 . What is the area of ∆DEF ?
Thank you!!


Hello Can Someone Help Me In This 3 In ABC BD 2DA AF 2FC CE 2EB The Area Of ABC Is 10 Cm2 What Is The Area Of DEF Thank You class=

Sagot :

Nzm

SOLUTION:

[tex]\textsf{Connect point A and point E.}[/tex]

[tex]\textsf{Observe that AE is the height of } \sf \triangle ABC \: and \: \triangle ABE[/tex]

[tex]\sf Area_{\triangle ABE} = \frac{1}{2}CE \times AE \rightarrow First \: eq.[/tex]

[tex]\sf Area_{\triangle ABC} = \frac{1}{2}(CE + BE) AE[/tex]

[tex]\textsf{Since CE = 2EB,}[/tex]

[tex]\sf Area_{\triangle ABC} = \frac{1}{2}(2BE + BE) AE = \frac{1}{2}(3BE ) AE \rightarrow Second \: eq.[/tex]

[tex]\textsf{Dividing first eq. and second eq. yields}[/tex]

[tex]\sf Area_{\triangle ABE} = \frac{1}{3}Area_{\triangle ABC} = \frac{10}{3} \: cm^2[/tex]

[tex]\textsf{Now, observe that } \sf \triangle ADF \: and \: \triangle ABE \: have \: the \: same \: base[/tex]

[tex]\textsf{So,}[/tex]

[tex]\sf Area_{\triangle ADF} = \frac{1}{2}BE \times BD[/tex]

[tex]\sf Area_{\triangle ABE} = \frac{1}{2} BE(BD+DA)[/tex]

[tex]\textsf{We have BD = 2DA, thus}[/tex]

[tex]\sf Area_{\triangle ABE} = \frac{1}{2} BE(BD+\frac{1}{2}BE)[/tex]

[tex]\textsf{Dividing the areas of the two triangles yields}[/tex]

[tex]\sf Area_{\triangle ADF} = \frac{2}{3}Area_{\triangle ABE}[/tex]

[tex]\sf Area_{\triangle ADF} = \frac{2}{3} \times \frac{10}{3} \: cm^2 = \frac{20}{9} \: cm^2[/tex]

[tex]\textsf{Similarly, we also have AF = 2FC, then AF = BD and FC = DA}[/tex]

[tex]\textsf{This implies that:}[/tex]

[tex]\sf Area_{\triangle BDE} = Area_{\triangle ADF} = Area_{\triangle CEF} = \frac{20}{9} \: cm^2[/tex]

[tex]\textsf{It follows that:}[/tex]

[tex]\sf Area_{\triangle DE\textsf{F}} =Area_{\triangle ABC} - Area_{\triangle BDE} - Area_{\triangle ADF} - Area_{\triangle CEF}[/tex]

[tex]\textsf{Substituting the value of the areas,}[/tex]

[tex]\sf Area_{\triangle DE\textsf{F}} = 10 - \frac{20}{9} - \frac{20}{9} - \frac{20}{9} = \boxed{\sf \frac{10}{3} \: cm^2}[/tex]

ANSWER:

10/3 cm²

#ashwksqepfzomludily

Umaasa kaming nahanap mo ang hinahanap mo. Huwag mag-atubiling bumalik sa amin para sa higit pang mga sagot at napapanahong impormasyon. Umaasa kaming naging kapaki-pakinabang ang aming mga sagot. Bumalik anumang oras para sa higit pang tumpak na mga sagot at napapanahong impormasyon. Imhr.ca, ang iyong pinagkakatiwalaang tagasagot. Huwag kalimutang bumalik para sa karagdagang impormasyon.