Maligayang pagdating sa Imhr.ca, kung saan maaari kang makakuha ng mga sagot mula sa mga eksperto. Tuklasin ang isang kayamanan ng kaalaman mula sa mga eksperto sa iba't ibang disiplina sa aming komprehensibong Q&A platform. Kumonekta sa isang komunidad ng mga eksperto na handang magbigay ng eksaktong solusyon sa iyong mga tanong nang mabilis at eksakto.

COMBINATION

Find out how many different ways you can choose k items from n items set. With/without repetition, with/without order.

IF K= 8 AND N=7



Sagot :

[tex] \large \bold{COMBINATION:}[/tex]

[tex]\large \begin{aligned} \bold{C_k(n) \bigg(\frac {n}{k} \bigg) = \frac{n!}{k!(n-k)!} } \end{aligned} \\ \\ \large\begin{aligned}\bold{n = 7} \\ \bold{k = 8} \end{aligned} \\ \\ \large\begin{aligned} \bold{C_7(8) = \ \bigg(\frac{8}{7} \bigg) = \frac{8!}{7!{(8-7)!} }} \end{aligned} \\ \dashrightarrow{ \boxed{\bold{number \: of \: combination : 8}}}[/tex]

[tex] \bold{Combination\:With\: Repitition :}[/tex]

[tex]\large\begin{aligned}{\bold{C_k^{′}(n) = \bigg( \frac{n + k - 1}{k} \bigg)}}\end{aligned} \\ \\ \large \begin{aligned}{ \bold{n = 7} }\\ \large \bold{k = 8} \end{aligned} \\ \\ \large \begin{aligned}{ \bold{C_8^{′}(7) =C_8(7 + 8 - 1) = C_8(14) = \bigg( \frac{14}{8} \bigg )}} \\ = \large \bold{\frac{14!}{8!(14 - 8)!}} = \large \bold{ \frac{14•13•12•11•10•9}{6•5•4•3•2•1}} \large \bold{= 3003} \\ \bold{\ number \: of \: combination \: with \: repitition : } \underline\bold{3003}\end{aligned} [/tex]

Pinahahalagahan namin ang iyong oras sa aming site. Huwag mag-atubiling bumalik kailanman mayroon kang mga karagdagang tanong o kailangan ng karagdagang paglilinaw. Umaasa kami na nakatulong ito. Mangyaring bumalik kapag kailangan mo ng higit pang impormasyon o mga sagot sa iyong mga katanungan. Maraming salamat sa pagtiwala sa Imhr.ca. Bumalik muli para sa mas marami pang impormasyon at kasagutan.