Ang Imhr.ca ang pinakamahusay na lugar upang makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga tanong. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa isang komunidad ng mga eksperto sa aming komprehensibong Q&A platform. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga propesyonal sa aming madaling gamitin na Q&A platform.

find the next four terms in the sequence 1,4,9,16,25,__,___,__,__,​

Sagot :

Answer:

36,49,66,85

Step-by-step explanation:

just add 2

sana makatulong

AGboii

[tex] \large\underline \mathcal{{QUESTION:}}[/tex]

  • find the next four terms in the sequence 1,4,9,16,25,__,___,__,__,

[tex] \large\underline \mathcal{{ANSWER:}}[/tex]

  • The next four terms are 36,49,64,and 81

[tex]\\[/tex]

[tex] \large\underline \mathcal{{SOLUTION:}}[/tex]

First , We will solve for the nth term or the formula of the quadratic sequence.

  • an²+bn+c

[tex]\\[/tex]

Using the formula , the first term is 1 , so we will substitute the value of 1 to n. Then equate to the first term or (1)

[tex] \sf an²+bn+c=1 \\ \sf a(1)²+b(1)+c=1 \\ \boxed{a+b+c=1} \: \longleftarrow \mathtt{eq1}[/tex]

Again , Substitute 2 to n and equate to the second term or (4)

[tex] \sf an²+bn+c=4 \\ \sf a(2)²+b(2)+c=4 \\ \boxed{4a+2b+c=4} \: \longleftarrow \mathtt{eq2}[/tex]

Lastly , Substitute 3 to n and equate to the third term or (9)

[tex] \sf an²+bn+c=9 \\ \sf a(3)²+b(3)+c=9 \\\boxed{9a+3b+c=9} \: \longleftarrow \mathtt{eq3}[/tex]

[tex]\\[/tex]

Now that we got the three equations we will subtract them.

Equation 2 - Equation 1

[tex] \: \: \: \: \: \: \: 4a+2b+c=4\\-\underline{\: \: \: \: \: \: \: \: a+b+c=1} \\ = \boxed{3a + b = 3}[/tex]

Equation 3 - Equation 2

[tex] \: \: \: \: \: 9a+3b+c=9 \\-\underline{ \: \: 4a+2b+c=4} \\ = \boxed{5a + b = 5}[/tex]

[tex]\\[/tex]

Solving the value of a to the differences of the equation by elimination:

[tex] \: \: \: \: \: 5a+b=5 \\\underline{- \: \: \: 3a+b=3} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: 2a = 2 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \:\frac{2a}{2} = \frac{2}{2} \\ \\ \: \implies \boxed{a = 1}[/tex]

[tex]\\[/tex]

Now , we get the value of a , thus we will find for the values of b and c. Let's substitute the value of a to the equation:

[tex] \: \: \: \: \: 5(1)+b=5 \\\underline{ + \: \: \: 3(1)+b=3} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: 8 +2 b = 8 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 2b = 8 - 8 \\ \: \: \: \: \: \: \: 2b = 0 \\ \\ \: \implies\boxed{b = 0}[/tex]

[tex]\\[/tex]

Lastly , We will substitute to any of the first equation:

[tex] \: \: \: \: \: \: \: \: \:a + b + c = 1 \\ (1) + (0) + c = 1 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 1 + c = 1 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: c = 1 - 1 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{c = 0}[/tex]

[tex]\\[/tex]

a = 1 , b = 0 , c = 0

Summing up , We get the formula:

  • an²+bn+c
  • 1n²+0(n)+0

[tex]\\[/tex]

Now that we got the formula: We will find for the next four terms:

[tex]\\[/tex]

Substitute n = 6

  • n² = 6² = 36

[tex]\\[/tex]

Substitute n = 7

  • n² = 7² = 49

[tex]\\[/tex]

Substitute n = 8

  • n² = 8² = 64

[tex]\\[/tex]

Substitute n = 9

  • n² = 9² = 81

[tex]\\[/tex]

  • Therefore , The sequence is 1,4,9,16,25,36,49,64,81