Ang Imhr.ca ay narito upang tulungan kang makahanap ng mga sagot sa lahat ng iyong mga katanungan mula sa mga eksperto. Kumuha ng agarang at mapagkakatiwalaang sagot sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming platform. Maranasan ang kaginhawaan ng paghahanap ng eksaktong sagot sa iyong mga tanong mula sa mga bihasang propesyonal sa aming platform.
Sagot :
Answer:
Step-by-step explanation:
Geometric Sequence:
A geometric sequence is a series of number that follows an order.
It follows a rule such as the below:
Xₙ = ar⁽ⁿ⁻¹⁾
Where:
n = is the nth term
a = is the first terms
r = is the common ratio
Now that we have the formula for the geometric sequence, we can now calculate the following geometric sequences:
1) 3,12,48,__ , __
First we need to determine what is the common ratio "r"
looking at the sequence, the common ration is 4 because
3 = first digit
3 x 4 = 12 (the second digit)
12 x 4 = 48 (the third digit)
Hence,
r = 4
The missing digit in this sequence is the 4th and 5th digit, thus using the formula given above:
For the 4th digit:
Xₙ = ar⁽ⁿ⁻¹⁾
X₄ = 3(4)⁽⁴⁻¹⁾
X₄ = 3(4)⁽³⁾
X₄ = 3(64)
X₄ = 192
For the 5th digit:
Xₙ = ar⁽ⁿ⁻¹⁾
X₅ = 3(5)⁽⁵⁻¹⁾
X₅ = 3(4)⁽⁴⁾
X₄ = 3(256)
X₄ = 768
Therefore the geometric sequence is:
3, 12, 48, 192 , 768
2) __,__,32,64,128
First find out "r"
From the 3rd to 5th digit:
the common ratio is 2
(because 128 ÷ 64 = 2, similarly 64 ÷ 32 = 2) thus, r = 2
For the 1st digit "a":
We first need to determine a from the already given sequence, let's say the 3rd sequence:
32 = a(2)⁽³⁻¹⁾
32 = a(2)⁽²⁾
32 = a(4)
a = 32 ÷ 4
Thus the 1st digit is:
a = 8
For the 2nd digit
Xₙ = ar⁽ⁿ⁻¹⁾
X₂ = 8(2)⁽²⁻¹⁾
X₂ = 3(4)⁽¹⁾
X₂ = 3(4)
X₂ = 12
Therefore the geometric sequence is:
8,12,32,64,128
3) 120,60,30,__,__,__
Find r:
From the standard formula for geometric sequence:
Xₙ = ar⁽ⁿ⁻¹⁾
Lets use the 2nd digit from the sequence, 60
60 = 120r⁽²⁻¹⁾
60 = 120r⁽¹⁾
[tex]\frac{60}{120}[/tex] = r
r = [tex]\frac{1}{2}[/tex] or 0.5
Thus finding the 4th, 5th and 6th digits would be:
X₄ = 120(0.5)⁽⁴⁻¹⁾
X₄ = 120(0.5)⁽³⁾
X₄ = 120(0.125)
X₄ = 15 → 4th digit
--
X₅ = 120(0.5)⁽⁵⁻¹⁾
X₅ = 120(0.5)⁽⁴⁾
X₅ = 120(0.0625)
X₅ = 7.5 → 5th digit
--
X₆ = 120(0.5)⁽⁶⁻¹⁾
X₆ = 120(0.5)⁽⁵⁾
X₅ = 120(0.03125)
X₆ = 3.75 → 5th digit
Thus the geometric sequence would be:
120 ,60 ,30 ,15, 7.5 , 3.75
For items 4 to 9 geometric sequence, I will not be showing the full solution as the above solutions would be enough for you to be able to solve the remaining problems, I will only give the common ratio "r" and the complete geometric sequences:
4) 5,__,20,40,__,__
Ans:
r = 2
5, 10, 20, 40, 80, 120
5)__,4,12,40,__,__
Lets find r:
Xₙ = ar⁽ⁿ⁻¹⁾
4 = ar⁽²⁻¹⁾
4 = ar⁽¹⁾
4=ar
thus;
a = [tex]\frac{4}{r}[/tex]
For the third term
12 = [tex]\frac{4}{r}[/tex](r)⁽³⁻¹⁾
12 = [tex]\frac{4}{r}[/tex] r²
in this case the donominator "r" will be cancelled.
12= 4r
thus r = 3
To find the first term lets use the 3rd digit from the sequence
12 = a(3)⁽³⁻¹⁾
12 = a(3)²
12 = a(9)
thus
a = [tex]\frac{12}{9}[/tex]
or
a= 1 [tex]\frac{1}{3}[/tex] → 1.3333
For the 5th term:
X₅ = 1.333(3)⁽⁵⁻¹⁾
X₅ = 1.333 (3)⁽⁴⁾
X₅ = 1.333(81)
X₅ = 108
For the 6th term:
X₆ = 1.333(3)⁽⁶⁻¹⁾
X₆ = 1.333 (3)⁽⁵⁾
X₆ = 1.333(243)
X₆ = 324
Thus the geometric sequence would be:
1 1/3 ,4 ,12 ,40,108,324
6)-2,__,__,-16,-32,-64
Ans:
r = 2
-2,-4, -8 ,-16,-32,-64
7) 256,__,__,-32,16
Ans:
r = 0.5
256,-128,64,-32,16
8) 27,9,__,__,1/3
Ans:
r = 9/27
27 , 9 , 3 , 1 , 1/3
9)1/4,__,__,__,64,256
Ans:
r = 4
1/4 , 1 , 4 , 16 ,64,256
B. Insert 3 terms between 2 and 32 of geometric sequence.
Thus,
2, __, __, __, 32
To find r,
Xₙ = ar⁽ⁿ⁻¹⁾
32 = 2r⁽⁵⁻¹⁾
32 = 2r⁴
r⁴ = 32/2
r = [tex]\sqrt[4]{16}[/tex]
r = 2
Xₙ = ar⁽ⁿ⁻¹⁾
X₂ = 2(2)⁽²⁻¹⁾
X₂ = 2(2)⁽¹⁾
X₂ = 2(2)
X₂ = 4
__
Xₙ = ar⁽ⁿ⁻¹⁾
X₃ = 2(2)⁽³⁻¹⁾
X₃ = 2(2)⁽²⁾
X₃ = 2(4)
X₃ = 8
__
Xₙ = ar⁽ⁿ⁻¹⁾
X₄ = 2(2)⁽⁴⁻¹⁾
X₃ = 2(2)⁽³⁾
X₃ = 2(8)
X₃ = 16
Thus the geometric sequence would be:
2, 4 , 8 , 16 , 32
For more information regarding geometric sequence visit the link below:
https://brainly.ph/question/1583842
_
#BetterWithBrainly
Pinahahalagahan namin ang iyong oras sa aming site. Huwag mag-atubiling bumalik kailanman mayroon kang mga karagdagang tanong o kailangan ng karagdagang paglilinaw. Umaasa kaming nahanap mo ang hinahanap mo. Huwag mag-atubiling bumalik sa amin para sa higit pang mga sagot at napapanahong impormasyon. Maraming salamat sa pagbisita sa Imhr.ca. Balik-balikan kami para sa pinakabagong mga sagot at impormasyon.