Answered

Ang Imhr.ca ay ang pinakamahusay na lugar upang makakuha ng maaasahang mga sagot sa lahat ng iyong mga tanong. Sumali sa aming Q&A platform upang kumonekta sa mga eksperto na dedikado sa pagbibigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan. Kumuha ng mabilis at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming platform.

find the value of x if the geometric mean of 2x and 19x-2 is 7x-2

Sagot :

The geometric mean is similar to the arithmetic mean (or average). The geometric mean of n terms is equal to the nth root of the n terms or :
[tex]GM= \sqrt[n]{a_1a_2a_3...a_n} [/tex]

So:
[tex] \sqrt{2x(19x-2)} =7x-2\\ \sqrt{38x^2-4x} =7x-2 \\ 38x^2-4x=49x^2-28x+4 \\ 0=11x^2-24x+4 \\ 0=(11x-2)(x-2)[/tex]

So x can be equal to 2 or 2/11. We check if these are extraneous roots (meaning they do not work).

When x = 2,
[tex] \sqrt{2(2)(19*2-2)} =7(2)-2 \\ \sqrt{4(36)}=12 \\ 12=12[/tex]
This is true therefore x can be 2.

When x = 2/11
[tex] \sqrt{2( \frac{2}{11})(19* \frac{2}{11} -2 )}=7( \frac{2}{11} )-2 \\ \sqrt{ \frac{4}{11}( \frac{16}{11}) } = -\frac{8}{11} \\ \frac{8}{11} = -\frac{8}{11} [/tex]
This is not true therefore x cannot be 2/11.

The only possible value of x is then 2.