Z Given: A ZYX; ZX > ZY Prove: m2Y > m2 X 2 Y 1 w STATEMENTS A. Draw YW such that ZY = ZW B. ZY ZW C.21222 D. (10) E.m_Y = m_2 + m23 F. MZY > m 2 G. (11) H. MzY > m2x 1. mży > mzX х REASONS a. The Ruler Postulate/construction b. (9) c. Definition of Isosceles Triangle Theorem d. Definition of Congruent Angles e. Angle Addition Postulate f. If a = b + c and c>0, then a >b. g. Law of Substitution h. Definition of Exterior Angle Theorem i. (12) 9. a. Definition of Congruent Segments b. Definition of Congruent Angles c. Angle Addition Postulate d. Transitive Property of Inequality 10. a. m21=m22 b.mc1=m23 C. MZY = MLZ d. m 2 = m23 11. a. MZZ > m 2 C. MZx > m_1 b. mZY > m21 d.m_Y = m_Z 12. a .Law of Substitution c. Angle Addition Postulate b. Definition of Congruent Angles d. Transitive Property of Inequality 0 Given: AOPN; ON > OP Prove: ZOPN >ZONP L 1 N р P Statements A. OP = OL B.AOPL is isosceles C.21 22 D.LOPN = 1 + 23 E. ZOPN >21 F. LOPN>22 G (16) Reasons a. By construction b. (13) c. Base angles of isosceles triangles are congrue d. (14) e. Property of Inequality f. (15) a Linear Pair Postulate