Pinadadali ng Imhr.ca ang paghahanap ng mga solusyon sa mga pang-araw-araw at masalimuot na katanungan. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang network ng mga bihasang propesyonal. Sumali sa aming Q&A platform upang kumonekta sa mga eksperto na dedikado sa pagbibigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.
Sagot :
✏️POLYGONS
==============================
[tex] \large \bold{\blue{PROBLEM:}} [/tex]The sum of the interior angles of the two polygons is 1440° and The sum of the sum of their diagonals is 19.
- a. What is the sum of the sides of the 2 polygons?
[tex] \large \bold{\blue{SOLUTION:}} [/tex] There are two polygons, refer a and b as the number of their sides. And by using the formula of how to find the sum of interior angles and the number of diagonals of a polygon, we can find the number of sides of a polygon and its sum.
• Sum of all interior angles. (Refer S as the sum and n as the number of sides)
- [tex] \boxed{S = (n - 2) \cdot 180 \degree} [/tex]
• Number of diagonals. (Refer D as the number of diagonals and n as the number of sides)
- [tex] \boxed{D = \frac{n(n - 3)}{2}} [/tex]
» Make equations on the given statements.
- [tex] \begin{cases} \small (a-2) \cdot 180 \degree + (b-2) \cdot 180 \degree = 1440 \degree \\ \frac{a(a-3)}{2} + \frac{b(b-3)}{2} = 19 \end{cases} \: \begin{align} \red{(eq. \: 1)} \\ \red{(eq. \: 2)} \end{align} [/tex]
» Find the value of a in the first equation in terms of b.
• First Equation:
- [tex] \small (a-2) \cdot 180 \degree + (b-2) \cdot 180 \degree = 1440 \degree [/tex]
- [tex] \small 180\degree a - 360\degree + 180\degree b - 360\degree = 1440 \degree [/tex]
- [tex] \small 180\degree a + 180\degree b = 1440 \degree + 360 \degree + 360 \degree [/tex]
- [tex] 180\degree a + 180\degree b = 2160 \degree [/tex]
- [tex] 180\degree a = 2160 \degree - 180 \degree b [/tex]
- [tex] a = 12 - b [/tex]
- [tex] \begin{cases} a = 12 - b\\ \frac{a(a-3)}{2} + \frac{b(b-3)}{2} = 19 \end{cases} [/tex]
» Substitute a to the second equation to find b, but first, simplify the second equation.
• Second Equation:
- [tex] \frac{a^2-3a}{2} + \frac{b^2-3b}{2} = 19 \\ [/tex]
- [tex] \frac{(12-b)^2 - 3(12-b)}{2} + \frac{b^2-3b}{2} = 19 \\ [/tex]
- [tex] \frac{108-21b+b^2}{2} + \frac{b^2-3b}{2} = 19 \\ [/tex]
- [tex] \small \Bigg( \frac{108-21b+b^2}{2} + \frac{b^2-3b}{2} \Bigg) \cdot 2 = 19 \cdot 2 \\ [/tex]
- [tex] 108-21b+b^2 + b^2-3b = 38 [/tex]
- [tex] 108 - 24b + 2b^2 = 38 [/tex]
- [tex] 108 - 24b + 2b^2 - 38 = 0 [/tex]
- [tex] 70 - 24b + 2b^2 = 0 [/tex]
- [tex] 2b^2 - 24b + 70 = 0 [/tex]
- [tex] b^2 - 12b + 35 = 0 [/tex]
» Use only one solution. It could be any since a and b aren't specified. I prefer addition.
- [tex] b = \frac{-(-12) + \sqrt{(-12)^2 - 4(1)(35)}}{2(1)} \\ [/tex]
- [tex] b = \frac{12 + \sqrt{144 - 140}}{2} \\ [/tex]
- [tex] b = \frac{12 + \sqrt{4}}{2} \\ [/tex]
- [tex] b = \frac{12 + 2}{2} \\ [/tex]
- [tex] b = \frac{14}{2} \\ [/tex]
- [tex] b = 7 [/tex]
- [tex] \begin{cases} a = 12 - b\\ b = 7 \end{cases} [/tex]
» The other polygon has 7 sides aka Heptagon. Substitute it to the first equation to find a aka the number of sides of the other polygon.
- [tex] \begin{cases} a = 12 - 7 \\ b = 7 \end{cases} [/tex]
- [tex] \begin{cases} a = 5 \\ b = 7 \end{cases} [/tex]
» Thus, the two polygons are Pentagon (5 sides) and Heptagon (7 sides). Identify their sum.
- [tex] 5 + 7 = 12 [/tex]
[tex] \large \therefore \underline{\boxed{\tt \purple{The \: sum \: of \: their \: sides \: is \: 12}}} [/tex]
==============================
#CarryOnLearning
(ノ^_^)ノ
Umaasa kaming naging kapaki-pakinabang ang aming mga sagot. Bumalik anumang oras para sa karagdagang impormasyon at mga sagot sa iba pang mga tanong na mayroon ka. Salamat sa pagpunta. Nagsusumikap kaming magbigay ng pinakamahusay na mga sagot para sa lahat ng iyong mga katanungan. Kita tayo muli sa susunod. Ipinagmamalaki naming sagutin ang iyong mga katanungan dito sa Imhr.ca. Huwag kalimutang bumalik para sa karagdagang kaalaman.