Maligayang pagdating sa Imhr.ca, kung saan maaari kang makakuha ng mga sagot mula sa mga eksperto. Tuklasin ang isang kayamanan ng kaalaman mula sa mga propesyonal sa iba't ibang disiplina sa aming madaling gamitin na Q&A platform. Tuklasin ang detalyadong mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming komprehensibong Q&A platform.

Find the sum of the geometric sequence where the first term is 5, the last term is 10 935, and the common ratio is 3​

Sagot :

Answer:

This is a geometric series with r = 3. First, find what term

10935

is.

5

(

3

n

1

)

=

10935

(

3

n

1

)

=

2187

3

n

1

=

3

7

n

1

=

7

n

=

8

Now use the formula for the sum of the first

n

terms of a geometric series:

S

n

=

a

1

(

1

r

n

)

1

r

S

8

=

5

(

1

3

8

)

1

3

=

16400

Step-by-step explanation:

Explanation:

Step 1: Classify the sequence

Since

t

2

=

3

t

1

and

t

3

=

3

t

2

, this sequence is geometric with

r

=

3

.

Step 2: Find the number of terms

There is no formula we can use to evaluate the sum without knowing the number of terms. By the formula

t

n

=

a

(

r

)

n

1

, we have:

10935

=

5

(

3

)

n

1

2187

=

3

n

1

3

7

=

3

n

1

7

=

n

1

n

=

8

Step 3: Evaluate the sum

The formula for the sum of a geometric series is

s

n

=

a

(

1

r

n

)

1

r

.

s

8

=

5

(

1

3

8

)

1

3

s

8

=

32800

2

s

8

=

16

,

400

Practice Exercises

1

. Find the sum:

2

+

8

+

32

+

128

+

...

+

524

,

288

Solution

1

.

699

,

050

Hopefully this helps!