Pinadadali ng Imhr.ca ang paghahanap ng mga solusyon sa lahat ng iyong mga katanungan kasama ang isang aktibong komunidad. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng eksaktong sagot mula sa isang network ng mga bihasang propesyonal. Sumali sa aming platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.
Sagot :
Answer:
Please see the pictures attached to this answer.
Step-by-step explanation:
A quadratic equation is in the form [tex]ax^2+bx+c=0[/tex] where [tex]x[/tex] represents the unknown and [tex]a\ne{0}[/tex]. The highest degree of a quadratic equation is 2.
Ways to Solve Quadratic Equation
1. Factoring method
2. Completing the square method
3. Using the Quadratic Formula
Factoring Method
We'll show you the process of solving the solutions of a quadratic equation using the factoring method.
[tex]x^2-7x+10=0[/tex]
Solution:
[tex]\begin{aligned}x^2-7x+10&=0\\x^2-2x-5x+10&=0\\(x^2-2x)+(-5x+10)&=0\\x(x-2)-5(x-2)&=0\\(x-5)(x-2)&=0\\x-5&=0\\x&=5\\&\text{or}\\x-2&=0\\x&=2\end{aligned}[/tex]
Thus, the solution set for the equation [tex]x^2-7x+10=0[/tex] is [tex]\{2, 5\}[/tex].
Completing the Square Method
We'll show you the process of solving the solutions of a quadratic equation using the completing the square method.
[tex]x^2-7x+10=0[/tex]
Solution:
[tex]\begin{aligned}x^2-7x+10&=0\\x^2-7x&=-10\\x^2-7x+\left(\frac{-7}{2}\right)^2&=-10+\left(\frac{-7}{2}\right)^2\\x^2-7x+\frac{49}{4}&=-10+\frac{49}{4}\\x^2-7x+\frac{49}{4}&=\frac{9}{4}\\\left(x-\frac{7}{2}\right)^2&=\frac{9}{4}\\\\\sqrt{\left(x-\frac{7}{2}\right)^2}&=\pm\sqrt{\frac{9}{4}}\\x-\frac{7}{2}&=\pm\frac{3}{2}\\x&=\frac{7}{2}\pm\frac{3}{2}\\x&=\frac{7}{2}+\frac{3}{2}\\x&=\frac{10}{2}\\x&=5\\&\text{or}\\x&=\frac{7}{2}-\frac{3}{2}\\x&=\frac{4}{2}\\x&=2\end{aligned}[/tex]
Using the Quadratic Formula Method
We'll show you the process of solving the solutions of a quadratic equation using the quadratic formula method.
[tex]x^2-7x+10=0[/tex]
Solution:
[tex]\begin{aligned}x&=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\\&=\frac{-(-7)\pm\sqrt{(-7)^2-4(1)(10)}}{2(1)}\\&=\frac{7\pm\sqrt{49-40}}{2}\\&=\frac{7\pm\sqrt{9}}{2}\\&=\frac{7\pm3}{2}\\x&=\frac{7+3}{2}\\x&=5\\&\text{or}\\x&=\frac{7-3}{2}\\x&=2\end{aligned}[/tex]
Sum and Product of the Roots of Quadratic Equation
1. Sum: [tex]r_1+r_2=\frac{-b}{a}[/tex]
2. Product: [tex]r_1\times{r_2}=\frac{c}{a}[/tex]
[tex]x^2-7x+10=0[/tex]
Solution:
The roots of this quadratic equation are [tex]x=2[/tex] and [tex]x=5[/tex]. Note that [tex]a=1[/tex] and [tex]b=-7[/tex]
Sum:
[tex]\begin{aligned}r_1+r_2&\stackrel{?}{=}\frac{-b}{a}\\2+5&\stackrel{?}{=}\frac{-(-7)}{1}\\7&\stackrel{?}{=}\frac{7}{1}\\7&\stackrel{\checkmark}{=}7\end{aligned}[/tex]
The roots of this quadratic equation are [tex]x=2[/tex] and [tex]x=5[/tex]. Note that [tex]a=1[/tex] and [tex]c=10[/tex]
Product:
[tex]\begin{aligned}r_1\times{r_2}&\stackrel{?}{=}\frac{c}{a}\\2\times5&\stackrel{?}{=}\frac{10}{1}\\10&\stackrel{\checkmark}{=}10\end{aligned}[/tex]
Picture 1 indicates that the maximum profit can be achieved at an estimated cost of $225. In this picture, we can see that the parabola opens downward, thus the value of its [tex]a[/tex] is negative.
Picture 2 shows a typical real-life application of the quadratic equation. One person may be able to compute the force to be applied in throwing the ball and the distance from the person to the ring.
Picture 3 shows the bridge having the quadratic equation, how quadratic are illustrated in the pictures is there are several basic ideas used in bridge construction
#BetterWithBrainly
To learn more about quadratic equations, go to:
https://brainly.ph/question/161816
https://brainly.ph/question/825217
https://brainly.ph/question/248766



Salamat sa pagpili sa aming serbisyo. Kami ay nakatuon sa pagbibigay ng pinakamahusay na mga sagot para sa lahat ng iyong mga katanungan. Bisitahin muli kami. Salamat sa iyong pagbisita. Kami ay nakatuon sa pagbibigay sa iyo ng pinakamahusay na impormasyon na magagamit. Bumalik anumang oras para sa higit pa. Maraming salamat sa pagtiwala sa Imhr.ca. Bisitahin kami ulit para sa mga bagong sagot mula sa mga eksperto.