Makakuha ng pinakamahusay na mga solusyon sa lahat ng iyong mga katanungan sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Ang aming platform ay nag-uugnay sa iyo sa mga propesyonal na handang magbigay ng eksaktong sagot sa lahat ng iyong mga katanungan. Kumonekta sa isang komunidad ng mga eksperto na handang magbigay ng eksaktong solusyon sa iyong mga tanong nang mabilis at eksakto.

use synthetic division to find the quotient of(x³+4x²-x-22)and (x-2).​

Sagot :

Ichigx

PROBLEM:

  • use synthetic division to find the quotient of(x³+4x²-x-22)and (x-2).​

=============================

ANSWER:

  • [tex]\boxed{\green{x^2+6x+11}}[/tex]

==============================

CHECKING:

[tex]\frac{\left(x^3+4x^2-x-22\right)}{\left(x-2\right)}[/tex]

Coefficients of the numerator polynomial

1   4   -1     -22

Find the zeros of the denominator: [tex]x = 2[/tex]

Write the problem in synthetic division format:

[tex]\begin{matrix}\texttt{\space\space\space\space2¦\space\space\space\space1\space\space\space\space4\space\space\space-1\space\space-22}\\ \texttt{\space\space\space\space\space¦\underline{\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space}}\\ \texttt{\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space}\end{matrix}[/tex]

[tex]\mathrm{Carry\:down\:the\:leading\:coefficient,\:unchanged,\:to\:below\:the\:division\:symbol}[/tex]

[tex]\begin{matrix}\texttt{\space\space\space\space2¦\space\space\space\space1\space\space\space\space4\space\space\space-1\space\space-22}\\ \texttt{\space\space\space\space\space¦\underline{\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space}}\\ \texttt{\space\space\space\space\space\space\space\space\space\space1\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space}\end{matrix}[/tex]

Multiply the carry-down value by the zero of the denominator, and carry the result up into the next column:

[tex]1\cdot \:2=2[/tex]

[tex]\begin{matrix}\texttt{\space\space\space\space2¦\space\space\space\space1\space\space\space\space4\space\space\space-1\space\space-22}\\ \texttt{\space\space\space\space\space¦\underline{\space\space\space\space\space\space\space\space\space2\space\space\space\space\space\space\space\space\space\space}}\\ \texttt{\space\space\space\space\space\space\space\space\space\space1\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space}\end{matrix}[/tex]

Add down the column:

[tex]4+2=6[/tex]

[tex]\begin{matrix}\texttt{\space\space\space\space2¦\space\space\space\space1\space\space\space\space4\space\space\space-1\space\space-22}\\ \texttt{\space\space\space\space\space¦\underline{\space\space\space\space\space\space\space\space\space2\space\space\space\space\space\space\space\space\space\space}}\\ \texttt{\space\space\space\space\space\space\space\space\space\space1\space\space\space\space6\space\space\space\space\space\space\space\space\space\space}\end{matrix}[/tex]

Multiply the carry-down value by the zero of the denominator, and carry the result up into the next column:

[tex]6\cdot \:2=12[/tex]

[tex]\begin{matrix}\texttt{\space\space\space\space2¦\space\space\space\space1\space\space\space\space4\space\space\space-1\space\space-22}\\ \texttt{\space\space\space\space\space¦\underline{\space\space\space\space\space\space\space\space\space2\space\space\space12\space\space\space\space\space}}\\ \texttt{\space\space\space\space\space\space\space\space\space\space1\space\space\space\space6\space\space\space\space\space\space\space\space\space\space}\end{matrix}[/tex]

Add down the column:

[tex]-1+12=11[/tex]

[tex]\begin{matrix}\texttt{\space\space\space\space2¦\space\space\space\space1\space\space\space\space4\space\space\space-1\space\space-22}\\ \texttt{\space\space\space\space\space¦\underline{\space\space\space\space\space\space\space\space\space2\space\space\space12\space\space\space\space\space}}\\ \texttt{\space\space\space\space\space\space\space\space\space\space1\space\space\space\space6\space\space\space11\space\space\space\space\space}\end{matrix}[/tex]

Multiply the carry-down value by the zero of the denominator, and carry the result up into the next column:

[tex]11\cdot \:2=22[/tex]

[tex]\begin{matrix}\texttt{\space\space\space\space2¦\space\space\space\space1\space\space\space\space4\space\space\space-1\space\space-22}\\ \texttt{\space\space\space\space\space¦\underline{\space\space\space\space\space\space\space\space\space2\space\space\space12\space\space\space22}}\\ \texttt{\space\space\space\space\space\space\space\space\space\space1\space\space\space\space6\space\space\space11\space\space\space\space\space}\end{matrix}[/tex]

Add down the column:

[tex]-22+22=0[/tex]

[tex]\begin{matrix}\texttt{\space\space\space\space2¦\space\space\space\space1\space\space\space\space4\space\space\space-1\space\space-22}\\ \texttt{\space\space\space\space\space¦\underline{\space\space\space\space\space\space\space\space\space2\space\space\space12\space\space\space22}}\\ \texttt{\space\space\space\space\space\space\space\space\space\space1\space\space\space\space6\space\space\space11\space\space\space\space0}\end{matrix}[/tex]

[tex]\mathrm{The\:last\:carry-down\:value\:is\:the\:remainder}[/tex]

0

[tex]\mathrm{Write\:the\:result\:in\:polynom\:format}[/tex]

[tex]\boxed{\green{x^2+6x+11}}[/tex]