Pinadadali ng Imhr.ca ang paghahanap ng mga sagot sa iyong mga katanungan kasama ang isang aktibong komunidad. Maranasan ang kadalian ng paghahanap ng mapagkakatiwalaang sagot sa iyong mga tanong mula sa isang malawak na komunidad ng mga eksperto. Tuklasin ang detalyadong mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming komprehensibong Q&A platform.

Pa answer plssss pasahan na namin bukas ​

Pa Answer Plssss Pasahan Na Namin Bukas class=

Sagot :

Answer:

SLOPES

\red{••••••••••••••••••••••••••••••••••••••••••••••••••} ••••••••••••••••••••••••••••••••••••••••••••••••••

\underline{\mathbb{PROBLEM}:}

PROBLEM:

Joshua says that the system x + 2y = 4 and x + 2y = 2 has no solution. Which of the following reasons would support his statement?

I. The graph of the system of equations shows parallel lines.

II. The graph of the system of equations shows intersecting lines.

III. The two lines have the same slope but different y-intercepts.

a. I and II

b. I and III

c. II and III

d. I, II, and III

\red{••••••••••••••••••••••••••••••••••••••••••••••••••} ••••••••••••••••••••••••••••••••••••••••••••••••••

\underline{\mathbb{ANSWER}:}

ANSWER:

\qquad\Large » \tt\: \green{B. \: I \: and \: III} »B.IandIII

\red{••••••••••••••••••••••••••••••••••••••••••••••••••} ••••••••••••••••••••••••••••••••••••••••••••••••••

\underline{\mathbb{SOLUTION}:}

SOLUTION:

Determine the slope of the two linear equations by rearranging it into y-intercept form. In which m m is the slope of the line and b b is the y-intercept.

\begin{gathered} \begin{aligned} & \bold{Formula:} \\ & \boxed{y = mx + b} \end{aligned} \end{gathered}

Formula:

y=mx+b

\begin{gathered} \begin{cases} x + 2y = 4 \\ x + 2y = 2 \end{cases} \end{gathered}

{

x+2y=4

x+2y=2

\begin{gathered} \begin{cases} 2y = \text-x + 4 \\ 2y = \text-x + 2 \end{cases} \end{gathered}

{

2y=-x+4

2y=-x+2

\begin{gathered} \begin{cases} \frac{\cancel2y}{\cancel2} = \frac{\text-x + 4}{2} \\ \frac{\cancel2y}{\cancel2} = \frac{\text-x + 2}{2} \end{cases} \end{gathered}

{

2

2

y

=

2

-x+4

2

2

y

=

2

-x+2

\begin{gathered} \begin{cases} y = \text-\frac{1}{2}x + 2 \\ y = \text-\frac{1}{2}x + 1 \end{cases} \end{gathered}

{

y=-

2

1

x+2

y=-

2

1

x+1

» Now, we can see that the two linear equations have the same slope which is -½ but has different y-intercepts. Thus we can say that these lines are parallel.

\red{••••••••••••••••••••••••••••••••••••••••••••••••••} ••••••••••••••••••••••••••••••••••••••••••••

Pinahahalagahan namin ang iyong pagbisita. Sana'y naging kapaki-pakinabang ang mga sagot na iyong natagpuan. Huwag mag-atubiling bumalik para sa karagdagang impormasyon. Umaasa kami na nakatulong ito. Mangyaring bumalik kapag kailangan mo ng higit pang impormasyon o mga sagot sa iyong mga katanungan. Imhr.ca, ang iyong pinagkakatiwalaang site para sa mga sagot. Huwag kalimutang bumalik para sa higit pang impormasyon.