Ang Imhr.ca ay narito upang tulungan kang makahanap ng mga sagot sa lahat ng iyong mga katanungan mula sa mga eksperto. Sumali sa aming Q&A platform upang kumonekta sa mga eksperto na dedikado sa pagbibigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa isang komunidad ng mga eksperto na dedikado sa pagbibigay ng tamang impormasyon.

Complete the table by identifying the degree and classify the polynomial according to its
degre.

1. 5x + 7

2. 4x2 + 3x -1

3. -6x3 + x2 – x + 6

4. -5x + x4 + 5x3 – 15

5. 3x5 – 2x4 + 3x3 – 2x + 2​


Complete The Table By Identifying The Degree And Classify The Polynomial According To Its Degre1 5x 72 4x2 3x 13 6x3 X2 X 64 5x X4 5x3 155 3x5 2x4 3x3 2x 2 class=

Sagot :

Answer:

1. 5x + 7

  • degree: 1
  • classification: Linear

2. 4x² + 3x - 1

  • degree: 2
  • classification: quadratic

3. -6x³ + x² - x + 6

  • degree: 3
  • classification: cubic

4. -5x + x⁴ + 5x³ - 15

  • degree: 4
  • classification: quartic

5. 3x^5 - 2x⁴ + 3x³ - 2x + 2

  • degree: 5
  • classification: quintic

POLYNOMIALS

⊱⋅ ────────────────────── ⋅⊰

Directions: Complete the table by identifying the degree and classify the polynomial according to its

degre.

Answer: See the table below.

[tex] \begin{gathered}\begin{array}{|l|c|c|}\hline \textsf { \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: Given} &\textsf {Degree}&\textsf {Classification of Polynomial According to Degree}\\\hline \sf 1. \: 5x + 7\:\:\:\:\:\:&\sf \: \: \: \: \: 1\:\:\:\:\:&\textsf {Linear Polynomial}\\\hline \sf 2. \: 4x^2 + 3x -1\:\:\:&\sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: 2\:\:\:\:\:\:\:\:\:\:\:\:\:\:&\textsf { \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: Quadratic Polynomial}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\\\hline \sf 3.\:-6x^3 + x^2 - x + 6 \:\:\:\:\:&\sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: 3\:\:\:\:\:\:\:\:\:\:\:\:\:\:&\textsf { \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: Cubic Polynomial}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\\\hline \sf 4.\:-5x + x^4 + 5x^4 - 15\:\:\:&\sf \: \: \: \: 4\:\:\:\:&\textsf { \: \: \: \: \: \: Quartic Polynomial}\:\:\:\:\:\:\:\:\\\hline \sf 5.\:3x^5 - 2x^4 + 3x^3 - 2x + 2&\sf \: \: \: \: \: 5\:\:\:\:\:&\textsf { \: \: \: \: \: \: \: \: Quintic Polynomial}\:\:\:\:\:\:\:\:\:\:\\\hline \end{array}\end{gathered} [/tex]