Answered

Maligayang pagdating sa Imhr.ca, kung saan ang iyong mga tanong ay masasagot ng mga eksperto at may karanasang miyembro. Sumali sa aming platform upang makakuha ng mapagkakatiwalaang sagot sa iyong mga tanong mula sa isang malawak na komunidad ng mga eksperto. Kumuha ng agarang at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming platform.

the largest possible circle is drawn inside a square.then the largest possible square is drawn inside the circle.if the side of the bigger square is 4cm,what is the area of the smaller square?

Sagot :

Side of circumscribed square (bigger square) = 4 cm
Radius of the inscribed circle is equal to side of bigger square = 4 cm
Diagonal of the  inscribed square in circle is equal to the radius of the circle=4 cm

To compute for the area of the inscribed square, find its side using the Pythagorean Theorem (because the the diagonal of the square divides the square into two congruent right triangles)

Let x be the length of the shorter legs which are congruent.
Hypotenuse or the diagonal = 4 cm

(4 cm)² = x² + x²
16 cm² = 2x²

[tex] \sqrt{16} = \sqrt{2x ^{2} } [/tex]
[tex]4cm = x \sqrt{2} [/tex]

[tex] \frac{4}{ \sqrt{2} } = \frac{x \sqrt{2} }{ \sqrt{2} } [/tex]
[tex]x = 2 \sqrt{2} [/tex]

Area of inscribed square (the smaller square):

[tex]A = (2 \sqrt{2} ) ^{2} [/tex]
Area = 4 (2)
Area = 8 cm²