Makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga katanungan sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Tuklasin ang mga komprehensibong sagot sa iyong mga tanong mula sa mga bihasang propesyonal sa aming madaling gamitin na platform. Tuklasin ang komprehensibong mga solusyon sa iyong mga tanong mula sa isang malawak na hanay ng mga propesyonal sa aming madaling gamitin na platform.
Sagot :
(x-3)^2 = 25
x^2 + 9 - 6x = 25
x^2 - 6x + 9 - 25 = 0
x^2 - 6x - 16 = 0
x^2 - 8x + 2x - 16 = 0
x(x - 8) + 2(x - 8) = 0
(x + 2)(x - 8) = 0
x = -2 , 8
x^2 + 9 - 6x = 25
x^2 - 6x + 9 - 25 = 0
x^2 - 6x - 16 = 0
x^2 - 8x + 2x - 16 = 0
x(x - 8) + 2(x - 8) = 0
(x + 2)(x - 8) = 0
x = -2 , 8
4. [tex](x+3)^2=25[/tex]
[tex] \sqrt{(x+3)^2}= + or-\sqrt{25} [/tex]
[tex]x+3=+or-5[/tex]
[tex]x=5-3[/tex]
[tex]x=2[/tex]
[tex]x=-5-3[/tex]
[tex]x=-8[/tex]
[tex] \left \{ {{x=2} \atop {x=-8}} \right. [/tex]
[tex](s+4)^2=-2s[/tex]
[tex]s^2+8s+16+2s=0[/tex]
[tex]s^2+10s+16=0[/tex]
[tex]s^2+10s=-16[/tex]
[tex]s^2+10s+(5)^2=-16+(5)^2[/tex]
[tex] \sqrt{(s+5)^2}=+or- \sqrt{9} [/tex]
[tex]s+5=+or-3[/tex]
[tex]s=3-5[/tex]
[tex]s=-2[/tex]
[tex]s=-3-5[/tex]
[tex]s=-8[/tex]
[tex] \left \{ {{x=-2} \atop {x=-8}} \right. [/tex]
[tex](2t-3)^2=2t^2+5t-26[/tex]
[tex]4t^2-12t+9=2t^2+5t-26[/tex]
[tex]4t^2-2t^2-12t-5t+9+26=0[/tex]
[tex]2t^2-17t+35=0[/tex]
[tex]2t^2-17t=-35[/tex]
[tex] \frac{2t^2-17t}{2} = \frac{-35}{2} [/tex]
[tex]t^2- \frac{17}{2}t=- \frac{35}{2} [/tex]
[tex]t^2- \frac{17}{2} t+( \frac{17}{4})^2=- \frac{35}{2}+( \frac{17}{4})^2 [/tex]
[tex] \sqrt{(t- \frac{17}{4}) } =+or- \sqrt{ \frac{289}{16} } [/tex]
[tex]t- \frac{17}{4}=+or- \frac{17}{4} [/tex]
[tex]t= \frac{17}{4}+ \frac{17}{4} [/tex]
[tex]t= \frac{34}{4} or \frac{17}{2} [/tex]
[tex]t=- \frac{17}{4}+ \frac{17}{4} [/tex]
[tex]t=0[/tex]
[tex] \left \{ {{t= \frac{17}{2} } \atop {x=0}} \right. [/tex]
[tex]3(x+2)^2=2x^2+3x-8[/tex]
[tex]x^2+4x+4+3=2x^2+3x-8[/tex]
[tex] x^{2} -2 x^{2} +4x-3x+7+8=0[/tex]
[tex]- x^{2} -x+15=0[/tex]
[tex] \frac{- x^{2} -x}{-1} = \frac{-15}{-1} [/tex]
[tex] x^{2} +x+( \frac{1}{2})^2 =15+( \frac{1}{2})^2 [/tex]
[tex] \sqrt{(x+ \frac{1}{2})^2 } =+ or - \sqrt{ \frac{61}{4} } [/tex]
[tex]x+ \frac{1}{2} = +or- \sqrt{ \frac{61}{2} } [/tex] (When you write it on your paper don't include 2 in the square root sign)
[tex]x= \sqrt{ \frac{61-1}{2} } [/tex] (Likewise here, don't include -1/2 in the square root sign)
[tex]x=- \sqrt{ \frac{61-1}{2} } [/tex] (Here too)
5.Yes,
[tex]x^2+5x-14=0[/tex]
[tex](x+7)(x-2)=0[/tex]
[tex]x+7=0[/tex]
[tex]x-2=0[/tex]
[tex]x=-7[/tex]
[tex]x=2[/tex]
[tex]14-5x-x^2=0[/tex]
[tex]-1[14-5x-x^2=0][/tex]
Use distributive property then it will be equal to x²+5x-14=0.
[tex](x-4)^2=9[/tex]
[tex] \sqrt{(x-4)^2} = \sqrt{9} [/tex]
[tex]x-4=+or-3[/tex]
[tex]x=3+4[/tex]
[tex]x=7[/tex]
[tex]x=-3+4[/tex]
[tex]x=1[/tex]
[tex](x+4)^2=9[/tex]
[tex] x^{2} -8x+16-9=0[/tex]
[tex] x^{2} -8x+7=0[/tex]
[tex](x-7)(x-1)=0[/tex]
[tex]x-7=0[/tex]
[tex]x=7[/tex]
[tex]x-1=0[/tex]
[tex]x=1[/tex]
P.S. Done at last... Sorry for the late answers.... Solving it was time consuming... Sorry also because I can't quite get number 7.... I hope this helps you though... :(
[tex] \sqrt{(x+3)^2}= + or-\sqrt{25} [/tex]
[tex]x+3=+or-5[/tex]
[tex]x=5-3[/tex]
[tex]x=2[/tex]
[tex]x=-5-3[/tex]
[tex]x=-8[/tex]
[tex] \left \{ {{x=2} \atop {x=-8}} \right. [/tex]
[tex](s+4)^2=-2s[/tex]
[tex]s^2+8s+16+2s=0[/tex]
[tex]s^2+10s+16=0[/tex]
[tex]s^2+10s=-16[/tex]
[tex]s^2+10s+(5)^2=-16+(5)^2[/tex]
[tex] \sqrt{(s+5)^2}=+or- \sqrt{9} [/tex]
[tex]s+5=+or-3[/tex]
[tex]s=3-5[/tex]
[tex]s=-2[/tex]
[tex]s=-3-5[/tex]
[tex]s=-8[/tex]
[tex] \left \{ {{x=-2} \atop {x=-8}} \right. [/tex]
[tex](2t-3)^2=2t^2+5t-26[/tex]
[tex]4t^2-12t+9=2t^2+5t-26[/tex]
[tex]4t^2-2t^2-12t-5t+9+26=0[/tex]
[tex]2t^2-17t+35=0[/tex]
[tex]2t^2-17t=-35[/tex]
[tex] \frac{2t^2-17t}{2} = \frac{-35}{2} [/tex]
[tex]t^2- \frac{17}{2}t=- \frac{35}{2} [/tex]
[tex]t^2- \frac{17}{2} t+( \frac{17}{4})^2=- \frac{35}{2}+( \frac{17}{4})^2 [/tex]
[tex] \sqrt{(t- \frac{17}{4}) } =+or- \sqrt{ \frac{289}{16} } [/tex]
[tex]t- \frac{17}{4}=+or- \frac{17}{4} [/tex]
[tex]t= \frac{17}{4}+ \frac{17}{4} [/tex]
[tex]t= \frac{34}{4} or \frac{17}{2} [/tex]
[tex]t=- \frac{17}{4}+ \frac{17}{4} [/tex]
[tex]t=0[/tex]
[tex] \left \{ {{t= \frac{17}{2} } \atop {x=0}} \right. [/tex]
[tex]3(x+2)^2=2x^2+3x-8[/tex]
[tex]x^2+4x+4+3=2x^2+3x-8[/tex]
[tex] x^{2} -2 x^{2} +4x-3x+7+8=0[/tex]
[tex]- x^{2} -x+15=0[/tex]
[tex] \frac{- x^{2} -x}{-1} = \frac{-15}{-1} [/tex]
[tex] x^{2} +x+( \frac{1}{2})^2 =15+( \frac{1}{2})^2 [/tex]
[tex] \sqrt{(x+ \frac{1}{2})^2 } =+ or - \sqrt{ \frac{61}{4} } [/tex]
[tex]x+ \frac{1}{2} = +or- \sqrt{ \frac{61}{2} } [/tex] (When you write it on your paper don't include 2 in the square root sign)
[tex]x= \sqrt{ \frac{61-1}{2} } [/tex] (Likewise here, don't include -1/2 in the square root sign)
[tex]x=- \sqrt{ \frac{61-1}{2} } [/tex] (Here too)
5.Yes,
[tex]x^2+5x-14=0[/tex]
[tex](x+7)(x-2)=0[/tex]
[tex]x+7=0[/tex]
[tex]x-2=0[/tex]
[tex]x=-7[/tex]
[tex]x=2[/tex]
[tex]14-5x-x^2=0[/tex]
[tex]-1[14-5x-x^2=0][/tex]
Use distributive property then it will be equal to x²+5x-14=0.
[tex](x-4)^2=9[/tex]
[tex] \sqrt{(x-4)^2} = \sqrt{9} [/tex]
[tex]x-4=+or-3[/tex]
[tex]x=3+4[/tex]
[tex]x=7[/tex]
[tex]x=-3+4[/tex]
[tex]x=1[/tex]
[tex](x+4)^2=9[/tex]
[tex] x^{2} -8x+16-9=0[/tex]
[tex] x^{2} -8x+7=0[/tex]
[tex](x-7)(x-1)=0[/tex]
[tex]x-7=0[/tex]
[tex]x=7[/tex]
[tex]x-1=0[/tex]
[tex]x=1[/tex]
P.S. Done at last... Sorry for the late answers.... Solving it was time consuming... Sorry also because I can't quite get number 7.... I hope this helps you though... :(
Pinahahalagahan namin ang iyong pagbisita. Sana'y naging kapaki-pakinabang ang mga sagot na iyong natagpuan. Huwag mag-atubiling bumalik para sa karagdagang impormasyon. Salamat sa iyong pagbisita. Kami ay nakatuon sa pagtulong sa iyong makahanap ng impormasyon na kailangan mo, anumang oras na kailangan mo ito. Maraming salamat sa pagbisita sa Imhr.ca. Bumalik muli para sa higit pang kapaki-pakinabang na impormasyon at sagot mula sa aming mga eksperto.