Maligayang pagdating sa Imhr.ca, kung saan ang iyong mga tanong ay masasagot ng mga eksperto at may karanasang miyembro. Tuklasin ang libu-libong tanong at sagot mula sa isang komunidad ng mga eksperto na handang tumulong sa iyo. Tuklasin ang detalyadong mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming komprehensibong Q&A platform.
Sagot :
✒️AREA
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{PROBLEM}:} [/tex]
» The length of a rectangular vegetable garden is 4 feet more than its width. After a 2-foot cement border is placed around the garden, the area of garden and border is 320 square feet.
- a. Make an illustration of the vegetable garden.
- b. Find the original dimensions of the vegetable garden.
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{ANSWER}:} [/tex]
[tex] \qquad \Large \:\: \rm{length = 16 \: feet} [/tex]
[tex] \qquad \Large \:\: \rm{width = 12 \: feet} [/tex]
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]
» Let l and w be the length and the width of the garden. Make the length as 4 more than the width.
- [tex] l = w + 4 [/tex]
» With a 2 feet thick border. The length and the width of the garden with the border would be.
- [tex] length = l + 2 + 2 = l + 4 [/tex]
- [tex] width = w + 2 + 2 = w + 4 [/tex]
» Create two equations by the given statements.
- [tex] \begin{cases} l = w + 4 \\ (l + 4)(w + 4) = 320 \end{cases} \quad \begin{align} \tt{(eq. \: 1)} \\ \tt{(eq. \: 2)} \end{align} [/tex]
» Substitute l in the second equation from the first equation in terms of w.
- [tex] \begin{cases} l = w + 4 \\ (w + 4 + 4)(w + 4) = 320 \end{cases}[/tex]
- [tex] \begin{cases} l = w + 4 \\ (w + 8)(w + 4) = 320 \end{cases}[/tex]
- [tex] \begin{cases} l = w + 4 \\ w^2 + 12w + 32 = 320 \end{cases}[/tex]
- [tex] \begin{cases} l = w + 4 \\ w^2 + 12w + 32 - 320 = 0 \end{cases}[/tex]
- [tex] \begin{cases} l = w + 4 \\ w^2 + 12w - 288 = 0 \end{cases}[/tex]
» Solve the quadratic equation in the second equation by factoring. Use only the positive solution.
- [tex] w^2 + 12w - 288 = 0 [/tex]
- [tex] (w + 24)(w - 12) = 0 [/tex]
- [tex] w + 24 = 0 \quad,\quad w - 12 = 0 [/tex]
- [tex] w = \text-24 \quad,\quad \boxed{w = 12} [/tex]
» Thus, the width of the garden is 12 feet. Substitute it to the first equation to find the length.
- [tex] \begin{cases} l = 12 + 4 \\ w = 12 \end{cases}[/tex]
- [tex] \begin{cases} l = 16 \\ w = 12 \end{cases}[/tex]
[tex] \therefore [/tex] The length of the garden is 16 feet in measure.
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
(ノ^_^)ノ
Salamat sa iyong pagbisita. Kami ay nakatuon sa pagtulong sa iyong makahanap ng impormasyon na kailangan mo, anumang oras na kailangan mo ito. Salamat sa paggamit ng aming plataporma. Layunin naming magbigay ng tumpak at napapanahong mga sagot sa lahat ng iyong mga katanungan. Bumalik kaagad. Imhr.ca ay nandito upang magbigay ng tamang sagot sa iyong mga katanungan. Bumalik muli para sa higit pang impormasyon.