Ang Imhr.ca ang pinakamahusay na solusyon para sa mga naghahanap ng mabilis at tumpak na mga sagot sa kanilang mga katanungan. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang malawak na network ng mga propesyonal. Sumali sa aming platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.

•••••••••••••••••••••••••••••••••••
PA HELP PO TYTY!

NONSENSE REPORT! ;)
•••••••••••••••••••••••••••••••••••••​

PA HELP PO TYTYNONSENSE REPORT class=

Sagot :

CIRCLES

[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

#2

If mPR = 45 and mQS = 49, what is m∠PIR? m∠RTS?

[tex]\:[/tex]

[tex] \large{\sf \underline{Givens:}}[/tex]

  • mPR = 45
  • mQS = 49

[tex]\:[/tex]

[tex]\large{\sf \underline{Find:}}[/tex]

[tex]\: \: \: \: \: \: \: \: \: \: \: [/tex]m∠PIR and m∠RTS

[tex]\:[/tex]

[tex] \large{\sf \underline{Solution:}}[/tex]

[tex]\:[/tex]

» First, find m∠PTR

[tex]\:[/tex]

  • m∠PTR = ½ (mPR + mQS)

  • m∠PTR = ½ (45 + 49)

  • m∠PTR = ½ (94)

  • m∠PTR = 47

[tex]\:[/tex]

» Find m∠RTS

  • m∠RTS = 180 - (m∠PTR)

  • m∠RTS = 180 - 47

  • m∠RTS = 133

[tex]\:[/tex]

∴ m∠PTR is 47° and m∠RTS is 133°

[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

#3

[tex]\:[/tex]

If mMKL = 220 and mML = 140, what is m∠MQL?

[tex]\:[/tex]

[tex] \large{\sf \underline{Givens:}}[/tex]

[tex]\:[/tex]

  • mMKL = 220
  • mML = 140

[tex]\:[/tex]

[tex]\large{\sf \underline{Find:}}[/tex]

[tex]\:[/tex]

[tex]\: \: \: \: \: \: \: \: \: \: \: [/tex] m∠MQL

[tex]\:[/tex]

[tex] \large{\sf \underline{Solution:}}[/tex]

[tex]\:[/tex]

  • m∠MQL = ½(ML - MKL)

  • m∠MQL = ½(220 - 140)

  • m∠MQL = ½(80)

  • m∠MQL = 40

[tex]\:[/tex]

∴ m∠MQL is 40°

[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

#4

[tex]\:[/tex]

Suppose mCG = 6x + 5, mAR = 4x + 15 and m∠AEC = 120.

Find: a)x [tex]\: \: \: \: \: \: \: \: \: \: \: [/tex] ; b) mCG [tex]\: \: \: \: \: \: \: \: \: \: \: [/tex] ; c) mAR

[tex]\:[/tex]

[tex] \large{\sf \underline{Givens:}}[/tex]

  • mCG = 6x + 5
  • mAR = 4x + 15
  • m∠AEC = 120

[tex]\:[/tex]

[tex]\large{\sf \underline{Find:}}[/tex]

  • a) x
  • b) mCG
  • c) mAR

[tex]\:[/tex]

[tex] \large{\sf \underline{Solution:}}[/tex]

[tex]\:[/tex]

» Find (x)

[tex]\:[/tex]

  • mCG = mAR

  • 6x + 5 = 4x + 5

  • 6x - 4x = 15 - 5

  • 2x = 10

  • [tex] \frac{2x}{2} = \frac{10}{2} [/tex]

  • x = 5

[tex]\:[/tex]

» Find mCG

  • mCG

  • 6x + 5

Substitute x = 5

  • 6(5) + 5

  • 30 + 5 = 35

  • mCG = 35

[tex]\:[/tex]

» Find mAR

  • mAR

  • 4x + 15

Substitute x = 5

  • 4(5) + 15

  • 20 + 15 = 35

  • mAR = 35

[tex]\:[/tex]

∴ All the highlighted part/word(s) are the answers.

[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

#5

[tex]\:[/tex]

OK is tangent to ⊚ R at C. Suppose KC = OC, OK = 8 and RC = 3. Find; OR, RS, and KS

[tex]\:[/tex]

[tex]\large{\sf \underline{Find:}}[/tex]

  • OR
  • RS
  • KS

[tex]\:[/tex]

[tex] \large{\sf \underline{Solution:}}[/tex]

[tex]\:[/tex]

» Since OK = 8 and KC = OC, substitute it to the equation and find out KC and OC.

  • OK = KC + OC

  • 8 = KC + OC

  • 8 = 2(KC + OC)

  • 4 = KC ; 4 = OC

[tex]\:[/tex]

∆ Find OR using Pythagorean Theorem when RC = 3 and KC = 4.

  • RC² + KC² = OR²

  • 3² + 4² = OR²

  • 9 + 16 = OR²

  • 25 = OR²

  • [tex] \sqrt{25} = OR[/tex]

[tex]\:[/tex]

∴ OR measures 5 units

[tex]\:[/tex]

∆ Find RS

[tex]\:[/tex]

  • Since R is the center of the circle and C is the point on the circle, that means RC is the radius. RS = RC being the radius of the circle. Since RC = 3, RS is also 3.

[tex]\:[/tex]

∴ RS measures 3 units

[tex]\:[/tex]

∆ Find KS

[tex]\:[/tex]

» Using segment addition postulate, we get RS + KS = KR. We know that RS = 3 and KR is 5. Substitute it to get KS.

  • RS + KS = KR

  • 3 + KS = 5

  • KS = 5 - 3

  • KS = 2

[tex]\:[/tex]

∴ KS measures 2 units

[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

All highlighted number(s)/word(s)/parts are the answers.

[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

#CarryOnLearning

ヾ(〃^-^)ノ

Umaasa kami na nakatulong ang impormasyong ito. Huwag mag-atubiling bumalik anumang oras para sa higit pang mga sagot sa iyong mga tanong at alalahanin. Umaasa kaming nahanap mo ang hinahanap mo. Huwag mag-atubiling bumalik sa amin para sa higit pang mga sagot at napapanahong impormasyon. Imhr.ca, ang iyong go-to na site para sa mga tamang sagot. Huwag kalimutang bumalik para sa higit pang kaalaman.