Ang Imhr.ca ay narito upang tulungan kang makahanap ng mga sagot sa lahat ng iyong mga katanungan mula sa mga eksperto. Maranasan ang kaginhawaan ng pagkuha ng eksaktong sagot sa iyong mga tanong mula sa isang dedikadong komunidad ng mga propesyonal. Kumuha ng agarang at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming platform.

•••••••••••••••••••••••••••••••••••
PA HELP PO TYTY!

NONSENSE REPORT! ;)
•••••••••••••••••••••••••••••••••••••​


PA HELP PO TYTYNONSENSE REPORT class=

Sagot :

CIRCLES

[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

#2

If mPR = 45 and mQS = 49, what is m∠PIR? m∠RTS?

[tex]\:[/tex]

[tex] \large{\sf \underline{Givens:}}[/tex]

  • mPR = 45
  • mQS = 49

[tex]\:[/tex]

[tex]\large{\sf \underline{Find:}}[/tex]

[tex]\: \: \: \: \: \: \: \: \: \: \: [/tex]m∠PIR and m∠RTS

[tex]\:[/tex]

[tex] \large{\sf \underline{Solution:}}[/tex]

[tex]\:[/tex]

» First, find m∠PTR

[tex]\:[/tex]

  • m∠PTR = ½ (mPR + mQS)

  • m∠PTR = ½ (45 + 49)

  • m∠PTR = ½ (94)

  • m∠PTR = 47

[tex]\:[/tex]

» Find m∠RTS

  • m∠RTS = 180 - (m∠PTR)

  • m∠RTS = 180 - 47

  • m∠RTS = 133

[tex]\:[/tex]

∴ m∠PTR is 47° and m∠RTS is 133°

[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

#3

[tex]\:[/tex]

If mMKL = 220 and mML = 140, what is m∠MQL?

[tex]\:[/tex]

[tex] \large{\sf \underline{Givens:}}[/tex]

[tex]\:[/tex]

  • mMKL = 220
  • mML = 140

[tex]\:[/tex]

[tex]\large{\sf \underline{Find:}}[/tex]

[tex]\:[/tex]

[tex]\: \: \: \: \: \: \: \: \: \: \: [/tex] m∠MQL

[tex]\:[/tex]

[tex] \large{\sf \underline{Solution:}}[/tex]

[tex]\:[/tex]

  • m∠MQL = ½(ML - MKL)

  • m∠MQL = ½(220 - 140)

  • m∠MQL = ½(80)

  • m∠MQL = 40

[tex]\:[/tex]

∴ m∠MQL is 40°

[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

#4

[tex]\:[/tex]

Suppose mCG = 6x + 5, mAR = 4x + 15 and m∠AEC = 120.

Find: a)x [tex]\: \: \: \: \: \: \: \: \: \: \: [/tex] ; b) mCG [tex]\: \: \: \: \: \: \: \: \: \: \: [/tex] ; c) mAR

[tex]\:[/tex]

[tex] \large{\sf \underline{Givens:}}[/tex]

  • mCG = 6x + 5
  • mAR = 4x + 15
  • m∠AEC = 120

[tex]\:[/tex]

[tex]\large{\sf \underline{Find:}}[/tex]

  • a) x
  • b) mCG
  • c) mAR

[tex]\:[/tex]

[tex] \large{\sf \underline{Solution:}}[/tex]

[tex]\:[/tex]

» Find (x)

[tex]\:[/tex]

  • mCG = mAR

  • 6x + 5 = 4x + 5

  • 6x - 4x = 15 - 5

  • 2x = 10

  • [tex] \frac{2x}{2} = \frac{10}{2} [/tex]

  • x = 5

[tex]\:[/tex]

» Find mCG

  • mCG

  • 6x + 5

Substitute x = 5

  • 6(5) + 5

  • 30 + 5 = 35

  • mCG = 35

[tex]\:[/tex]

» Find mAR

  • mAR

  • 4x + 15

Substitute x = 5

  • 4(5) + 15

  • 20 + 15 = 35

  • mAR = 35

[tex]\:[/tex]

∴ All the highlighted part/word(s) are the answers.

[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

#5

[tex]\:[/tex]

OK is tangent to ⊚ R at C. Suppose KC = OC, OK = 8 and RC = 3. Find; OR, RS, and KS

[tex]\:[/tex]

[tex]\large{\sf \underline{Find:}}[/tex]

  • OR
  • RS
  • KS

[tex]\:[/tex]

[tex] \large{\sf \underline{Solution:}}[/tex]

[tex]\:[/tex]

» Since OK = 8 and KC = OC, substitute it to the equation and find out KC and OC.

  • OK = KC + OC

  • 8 = KC + OC

  • 8 = 2(KC + OC)

  • 4 = KC ; 4 = OC

[tex]\:[/tex]

∆ Find OR using Pythagorean Theorem when RC = 3 and KC = 4.

  • RC² + KC² = OR²

  • 3² + 4² = OR²

  • 9 + 16 = OR²

  • 25 = OR²

  • [tex] \sqrt{25} = OR[/tex]

[tex]\:[/tex]

∴ OR measures 5 units

[tex]\:[/tex]

∆ Find RS

[tex]\:[/tex]

  • Since R is the center of the circle and C is the point on the circle, that means RC is the radius. RS = RC being the radius of the circle. Since RC = 3, RS is also 3.

[tex]\:[/tex]

∴ RS measures 3 units

[tex]\:[/tex]

∆ Find KS

[tex]\:[/tex]

» Using segment addition postulate, we get RS + KS = KR. We know that RS = 3 and KR is 5. Substitute it to get KS.

  • RS + KS = KR

  • 3 + KS = 5

  • KS = 5 - 3

  • KS = 2

[tex]\:[/tex]

∴ KS measures 2 units

[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

All highlighted number(s)/word(s)/parts are the answers.

[tex]\green{ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

#CarryOnLearning

ヾ(〃^-^)ノ

Salamat sa iyong pagbisita. Kami ay nakatuon sa pagtulong sa iyong makahanap ng impormasyon na kailangan mo, anumang oras na kailangan mo ito. Salamat sa pagpunta. Nagsusumikap kaming magbigay ng pinakamahusay na mga sagot para sa lahat ng iyong mga katanungan. Kita tayo muli sa susunod. Maraming salamat sa pagbisita sa Imhr.ca. Balik-balikan kami para sa pinakabagong mga sagot at impormasyon.