Maligayang pagdating sa Imhr.ca, ang pinakamahusay na platform ng tanong at sagot para sa mabilis at tumpak na mga sagot. Kumuha ng mga sagot na kailangan mo nang mabilis at eksakto mula sa dedikadong komunidad ng mga eksperto sa aming platform. Sumali sa aming Q&A platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.

formula of the
saturated solution of Mg(OH)2, the concentration of Mg2+ is 1.31 × 10–4 M. What is the solubility product for Mg(OH)2? Mg(OH)2(s) ⇌ Mg2+(aq) + 2OH−(aq)​

Sagot :

Answer:

Learning Objectives

By the end of this section, you will be able to:

Write chemical equations and equilibrium expressions representing solubility equilibria

Carry out equilibrium computations involving solubility, equilibrium expressions, and solute concentrations

Solubility equilibria are established when the dissolution and precipitation of a solute species occur at equal rates. These equilibria underlie many natural and technological processes, ranging from tooth decay to water purification. An understanding of the factors affecting compound solubility is, therefore, essential to the effective management of these processes. This section applies previously introduced equilibrium concepts and tools to systems involving dissolution and precipitation.

The Solubility Product

Recall from the chapter on solutions that the solubility of a substance can vary from essentially zero (insoluble or sparingly soluble) to infinity (miscible). A solute with finite solubility can yield a saturated solution when it is added to a solvent in an amount exceeding its solubility, resulting in a heterogeneous mixture of the saturated solution and the excess, undissolved solute. For example, a saturated solution of silver chloride is one in which the equilibrium shown below has been established.

AgCl(s)⇌precipitationdissolutionAg+(aq)+Cl−(aq)

In this solution, an excess of solid AgCl dissolves and dissociates to produce aqueous Ag+ and Cl– ions at the same rate that these aqueous ions combine and precipitate to form solid AgCl (Figure 15.2). Because silver chloride is a sparingly soluble salt, the equilibrium concentration of its dissolved ions in the solution is relatively low.

Figure 15.2 Silver chloride is a sparingly soluble ionic solid. When it is added to water, it dissolves slightly and produces a mixture consisting of a very dilute solution of Ag+ and Cl– ions in equilibrium with undissolved silver chloride.

The equilibrium constant for solubility equilibria such as this one is called the solubility product constant, Ksp, in this case

AgCl(s)⇌Ag+(aq)+Cl−(aq)Ksp=[Ag+(aq)][Cl−(aq)]

Recall that only gases and solutes are represented in equilibrium constant expressions, so the Ksp does not include a term for the undissolved AgCl. A listing of solubility product constants for several sparingly soluble compounds is provided in Appendix J.

EXAMPLE 15.1

Writing Equations and Solubility Products

Write the dissolution equation and the solubility product expression for each of the following slightly soluble ionic compounds:

(a) AgI, silver iodide, a solid with antiseptic properties

(b) CaCO3, calcium carbonate, the active ingredient in many over-the-counter chewable antacids

(c) Mg(OH)2, magnesium hydroxide, the active ingredient in Milk of Magnesia

(d) Mg(NH4)PO4, magnesium ammonium phosphate, an essentially insoluble substance used in tests for magnesium

(e) Ca5(PO4)3OH, the mineral apatite, a source of phosphate for fertilizers

Solution

(a)AgI(s)⇌Ag+(aq)+I−(aq)Ksp=[Ag+][I−](b)CaCO3(s)⇌Ca2+(aq)+CO32−(aq)Ksp=[Ca2+][CO32−](c)Mg(OH)2(s)⇌Mg2+(aq)+2OH−(aq)Ksp=[Mg2+][OH−]2(d)Mg(NH4)PO4(s)⇌Mg2+(aq)+NH4+(aq)+PO43−(aq)Ksp=[Mg2+][NH4+][PO43−](e)Ca5(PO4)3OH(s)⇌5Ca2+(aq)+3PO43−(aq)+OH−(aq)Ksp=[Ca2+]5[PO43−]3[OH−]

Check Your Learning

Write the dissolution equation and the solubility product for each of the following slightly soluble compounds:

(a) BaSO4

(b) Ag2SO4

(c) Al(OH)3

(d) Pb(OH)Cl

ANSWER:

(a)BaSO4(s)⇌Ba2+(aq)+SO42−(aq)Ksp=[Ba2+][SO42−];(b)Ag2SO4(s)⇌2Ag+(aq)+SO42−(aq)Ksp=[Ag+]2[SO42−];(c)Al(OH)3(s)⇌Al3+(aq)+3OH−(aq)Ksp=[Al3+][OH−]3;(d)Pb(OH)Cl(s)⇌Pb2+(aq)+OH−(aq)+Cl−(aq)Ksp=[Pb2+][OH−][Cl−]

Salamat sa paggamit ng aming plataporma. Lagi kaming narito upang magbigay ng tumpak at napapanahong mga sagot sa lahat ng iyong mga katanungan. Salamat sa iyong pagbisita. Kami ay nakatuon sa pagtulong sa iyong makahanap ng impormasyon na kailangan mo, anumang oras na kailangan mo ito. Mahalaga ang iyong kaalaman. Bumalik sa Imhr.ca para sa higit pang mga sagot at impormasyon.