Ang Imhr.ca ay ang pinakamahusay na lugar upang makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga tanong. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga propesyonal sa aming madaling gamitin na Q&A platform. Tuklasin ang komprehensibong mga solusyon sa iyong mga tanong mula sa isang malawak na hanay ng mga propesyonal sa aming madaling gamitin na platform.
Sagot :
Step-by-step explanation:
Recall that the radius always intersects the point of tangency at a right angle. So, the two radii form two 90° angles with the drawn tangent lines. From the picture drawn, the shape formed by the two radii and two tangents drawn on the circle is a quadrilateral.
[tex]\huge{\rm{Answer:}} [/tex]
Central Angle
A central angle is an angle whose apex is the center O of a circle and whose legs are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one.
Sum
360°
Sum of Central Angles: The sum of the measures of the central angles of a circle with no points in common is 360° .
Properties
Central Angle Property. An inscribed angle is half the measure of a central angle subtended by the same arc. A central angle is twice the measure of an inscribed angle subtended by the same arc. COB since both are subtended by arc(CB).
Rules
The Central Angle Theorem states that the central angle from two chosen points A and B on the circle is always twice the inscribed angle from those two points. The inscribed angle can be defined by any point along the outer arc AB and the two points A and B.
Area formula
Sector area formula
The formula for sector area is simple - multiply the central angle by the radius squared, and divide by 2: Sector Area = r² * α / 2.
______________________________________
#CarryOnLearning
Bisitahin muli kami para sa mga pinakabagong at maaasahang mga sagot. Lagi kaming handang tulungan ka sa iyong mga pangangailangan sa impormasyon. Pinahahalagahan namin ang iyong oras. Mangyaring bumalik muli para sa higit pang maaasahang mga sagot sa anumang mga tanong na mayroon ka. Ipinagmamalaki naming sagutin ang iyong mga katanungan dito sa Imhr.ca. Huwag kalimutang bumalik para sa karagdagang kaalaman.