Maligayang pagdating sa Imhr.ca, ang pinakamahusay na platform ng tanong at sagot para sa mabilis at tumpak na mga sagot. Kumuha ng mabilis at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa mga bihasang propesyonal sa aming komprehensibong Q&A platform. Kumonekta sa isang komunidad ng mga propesyonal na handang tumulong sa iyo na makahanap ng eksaktong solusyon sa iyong mga tanong nang mabilis at mahusay.

the sum of the digits of a two-digit number is 7. when the digits are reversed, the number is 9les than the original number. find the numbers
SHOW YOUR SOLUTION PLS



Sagot :

✒️NUMBER DIGITS

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad \Large \:»\: \rm Digits \: are \: 4 \: and \: 3 [/tex]

[tex] \qquad \Large \:»\: \rm Original \: is \: 43 [/tex]

[tex] \qquad \Large \:»\: \rm Reversed \: is \: 34 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

Let x be the first digit of the original number and y as the second digit. Represent it as a number.

  • [tex] \rm Original = \mathcal{10x + y} [/tex]
  • [tex] \rm Reversed = \mathcal{10y + x} [/tex]

Make two equations based on the given statements.

  • [tex] \begin{cases} x + y = 7 \\ 10y + x = (10x + y)-9 \end{cases} \quad \begin{align} \tt{(eq. \: 1)} \\ \tt{(eq. \: 2)} \end{align} [/tex]

Simplify the values of x and y.

  • [tex] \begin{cases} x = 7 - y \\ 10y + x = 10x + y-9 \end{cases} [/tex]

  • [tex] \begin{cases} x = 7 - y \\ 10y - y = 10x -9 - x\end{cases} [/tex]

  • [tex] \begin{cases} x = 7 - y \\ 9y = 9x -9 \end{cases} [/tex]

  • [tex] \begin{cases} x = 7 - y \\ (9y)/9 = (9x -9)/9 \end{cases} [/tex]

  • [tex] \begin{cases} x = 7 - y \\ y = x - 1 \end{cases} [/tex]

Substitute x in the second equation from the first equation in terms of y.

  • [tex] \begin{cases} x = 7 - y \\ y = 7-y - 1 \end{cases} [/tex]

  • [tex] \begin{cases} x = 7 - y \\ y + y = 7 - 1 \end{cases} [/tex]

  • [tex] \begin{cases} x = 7 - y \\ 2y = 6 \end{cases} [/tex]

  • [tex] \begin{cases} x = 7 - y \\ 2y/2 = 6/2 \end{cases} [/tex]

  • [tex] \begin{cases} x = 7 - y \\ y = 3 \end{cases} [/tex]

Thus, the value of y is 3. Substitute it to the first equation to find the value of x.

  • [tex] \begin{cases} x = 7 - 3 \\ y = 3 \end{cases} [/tex]

  • [tex] \begin{cases} x = 4 \\ y = 3 \end{cases} [/tex]

Thus, the value of x is 4. Substitute the two values to find the original and the reversed digits.

  • [tex] \rm Original = \mathcal{10(4) + 3} [/tex]
  • [tex] \rm Reversed = \mathcal{10(3) + 4} [/tex]

  • [tex] \rm Original = \mathcal{40 + 3} [/tex]
  • [tex] \rm Reversed = \mathcal{30 + 4} [/tex]

  • [tex] \rm Original = \mathcal{43} [/tex]
  • [tex] \rm Reversed = \mathcal{34} [/tex]

Thus, the original number is 43 and its reversed digit is 34. Since the numbers that are asked weren't specified, I'll be putting the values of x and y along as the original and its reversed digit.

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ