Answered

Ang Imhr.ca ang pinakamahusay na lugar upang makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga tanong. Tuklasin ang isang kayamanan ng kaalaman mula sa mga propesyonal sa iba't ibang disiplina sa aming komprehensibong platform. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa dedikadong komunidad ng mga eksperto sa aming Q&A platform.

________________________________

Note: Please answer my question correctly, nonsense answer will be reported. ________________________________

Lesson: Illustrating the Center-Radius of the Equation of a Circle ________________________________​


Note Please Answer My Question Correctly Nonsense Answer Will Be Reported Lesson Illustrating The CenterRadius Of The Equation Of A Circle class=

Sagot :

✒️CIRCLE EQUATIONS

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

Part A:

[tex] \qquad \large \rm 1) \; (x - 2)^2 + (y + 4)^2 = 25 [/tex]

[tex] \qquad \large \rm 2) \; (x - 3)^2 + y^2 = 1/9 [/tex]

[tex] \qquad \large \rm 3) \; x^2 + y^2 = 1/16 [/tex]

[tex] \qquad \large \rm 4) \; (x + 7)^2 + (y - 1)^2 = 5 [/tex]

[tex] \qquad \large \rm 5) \; (x + 6)^2 + (y + 3)^2 = 48 [/tex]

[tex] \qquad \large \rm 6) \; x^2 + (y - 6)^2 = 81 [/tex]

Part B:

[tex] \qquad \large \rm 7) \; (x - 3)^2 + (y + 4)^2 = 45 [/tex]

[tex] \qquad \large \rm 8) \; (x - 5)^2 + (y - 1)^2 = 18 [/tex]

[tex] \qquad \large \rm 9) \; x^2 + y^2 = 25 [/tex]

[tex] \qquad \large \rm 10) \; x^2 + y^2 = 16 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

For Part A and B: The equation of the circle in standard form is written as:

  • [tex] (x - h)^2 + (y - k)^2 = r^2 [/tex]

Where (h,k) is the center and r is the radius. Substitute each given to get its equation.

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

"Part A"

Number 1:

  • [tex] (x - 2)^2 + \big[y - (\text-4)\big]^2 = 5^2 [/tex]

  • [tex] (x-2)^2 + (y + 4)^2 = 25 [/tex]

Number 2:

  • [tex] (x - 3)^2 + (y - 0)^2 = (1/3)^2 [/tex]

  • [tex] (x - 3)^2 + y^2 = 1/9 [/tex]

Number 3:

  • [tex] (x - 0)^2 + (y - 0)^2 = (1/4)^2 [/tex]

  • [tex] x^2 + y^2 = 1/16 [/tex]

Number 4:

  • [tex] \big[x - (\text-7)\big]^2 + (y - 1)^2 = (\sqrt5\,)^2 [/tex]

  • [tex] (x + 7)^2 + (y - 1)^2 = 5 [/tex]

Number 5:

  • [tex] \big[x - (\text-6)\big]^2 + \big[y - (\text-3)\big]^2 = (4\sqrt3\,)^2 [/tex]

  • [tex] (x + 6)^2 + (y + 3)^2 = 16(3) [/tex]

  • [tex] (x + 6)^2 + (y + 3)^2 = 48 [/tex]

Number 6:

  • [tex] (x - 0)^2 + (y -6)^2 = 9^2 [/tex]

  • [tex] x^2 + (y - 6)^2 = 81 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

"Part B"

Number 7:

Substitute the given center in the standard form of the equation.

  • [tex] (x - 3)^2 + \big[y - (\text-4)\big]^2 = r^2 [/tex]

  • [tex] (x - 3)^2 + (y + 4)^2 = r^2 [/tex]

Find the square of the radius if it passes through (6,2)

  • [tex] (6 - 3)^2 + (2 + 4)^2 = r^2 [/tex]

  • [tex] (3)^2 + (6)^2 = r^2 [/tex]

  • [tex] 9 + 36 = r^2 [/tex]

  • [tex] 45 = r^2 [/tex]

Substitute the square of the radius to the equation.

  • [tex] (x - 3)^2 + (y + 4)^2 = 45 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

Number 8:

Substitute the given center in the standard form of the equation.

  • [tex] (x - 5)^2 + (y - 1)^2 = r^2 [/tex]

Find the square of the radius if it passes through (8,-2)

  • [tex] (8 - 5)^2 + (\text-2 - 1)^2 = r^2 [/tex]

  • [tex] (3)^2 + (\text-3)^2 = r^2 [/tex]

  • [tex] 9 + 9 = r^2 [/tex]

  • [tex] 18 = r^2 [/tex]

Substitute the square of the radius to the equation.

  • [tex] (x - 5)^2 + (y - 1)^2 = 18 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

Number 9:

Substitute (0,0) as the given center in the standard form of the equation since it is at the origin.

  • [tex] (x - 0)^2 + (y - 0)^2 = r^2 [/tex]

  • [tex] x^2 + y^2 = r^2 [/tex]

Find the square of the radius if it passes through (4,3)

  • [tex] 4^2 + 3^2 = r^2 [/tex]

  • [tex] 16 + 9 = r^2 [/tex]

  • [tex] 25 = r^2 [/tex]

Substitute the square of the radius to the equation.

  • [tex] x^2 + y^2 = 25 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

Number 10:

Find the midpoint between the endpoints because that that would be the center of the circle.

[tex] \begin{align} & \bold{Formula:} \\ & \quad \boxed{\rm Midpoint = \bigg(\frac{x_2+x_1}2,\,\frac{y_2+y_1}2\bigg)} \end{align} [/tex]

  • [tex] \rm Center = \bigg(\frac{\text-4 + 4}2,\, \frac{0+0}2 \bigg) \\ [/tex]

  • [tex] \rm Center = \bigg(\frac{\,0\,}2,\, \frac{\,0\,}2 \bigg) \\ [/tex]

  • [tex] \rm Center = (0,0) [/tex]

Thus, the center is at the origin. Substitute it in the standard form of the equation.

  • [tex] (x - 0)^2 + (y - 0)^2 = r^2 [/tex]

  • [tex] x^2 + y^2 = r^2 [/tex]

Find the square of the radius if it passes through one of the given endpoints of the diameter: (4,0)

  • [tex] 4^2 + 0^2 = r^2 [/tex]

  • [tex] 16 + 0 = r^2 [/tex]

  • [tex] 16 = r^2 [/tex]

Substitute the square of the radius to the equation.

  • [tex] x^2 + y^2 = 16 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ

Salamat sa pagpili sa aming plataporma. Kami ay nakatuon sa pagbibigay ng pinakamahusay na mga sagot para sa lahat ng iyong mga katanungan. Bisitahin muli kami. Salamat sa pagbisita. Ang aming layunin ay magbigay ng pinaka-tumpak na mga sagot para sa lahat ng iyong pangangailangan sa impormasyon. Bumalik kaagad. Imhr.ca, ang iyong pinagkakatiwalaang tagasagot. Huwag kalimutang bumalik para sa karagdagang impormasyon.