Answered

Makakuha ng mabilis at tumpak na mga sagot sa iyong mga katanungan sa Imhr.ca, ang pinakamahusay na Q&A platform. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang network ng mga bihasang propesyonal. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga propesyonal sa aming madaling gamitin na Q&A platform.

________________________________

Note: Please answer my question correctly, nonsense answer will be reported. ________________________________

Lesson: Illustrating the Center-Radius of the Equation of a Circle ________________________________​

Note Please Answer My Question Correctly Nonsense Answer Will Be Reported Lesson Illustrating The CenterRadius Of The Equation Of A Circle class=

Sagot :

✒️CIRCLE EQUATIONS

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

Part A:

[tex] \qquad \large \rm 1) \; (x - 2)^2 + (y + 4)^2 = 25 [/tex]

[tex] \qquad \large \rm 2) \; (x - 3)^2 + y^2 = 1/9 [/tex]

[tex] \qquad \large \rm 3) \; x^2 + y^2 = 1/16 [/tex]

[tex] \qquad \large \rm 4) \; (x + 7)^2 + (y - 1)^2 = 5 [/tex]

[tex] \qquad \large \rm 5) \; (x + 6)^2 + (y + 3)^2 = 48 [/tex]

[tex] \qquad \large \rm 6) \; x^2 + (y - 6)^2 = 81 [/tex]

Part B:

[tex] \qquad \large \rm 7) \; (x - 3)^2 + (y + 4)^2 = 45 [/tex]

[tex] \qquad \large \rm 8) \; (x - 5)^2 + (y - 1)^2 = 18 [/tex]

[tex] \qquad \large \rm 9) \; x^2 + y^2 = 25 [/tex]

[tex] \qquad \large \rm 10) \; x^2 + y^2 = 16 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

For Part A and B: The equation of the circle in standard form is written as:

  • [tex] (x - h)^2 + (y - k)^2 = r^2 [/tex]

Where (h,k) is the center and r is the radius. Substitute each given to get its equation.

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

"Part A"

Number 1:

  • [tex] (x - 2)^2 + \big[y - (\text-4)\big]^2 = 5^2 [/tex]

  • [tex] (x-2)^2 + (y + 4)^2 = 25 [/tex]

Number 2:

  • [tex] (x - 3)^2 + (y - 0)^2 = (1/3)^2 [/tex]

  • [tex] (x - 3)^2 + y^2 = 1/9 [/tex]

Number 3:

  • [tex] (x - 0)^2 + (y - 0)^2 = (1/4)^2 [/tex]

  • [tex] x^2 + y^2 = 1/16 [/tex]

Number 4:

  • [tex] \big[x - (\text-7)\big]^2 + (y - 1)^2 = (\sqrt5\,)^2 [/tex]

  • [tex] (x + 7)^2 + (y - 1)^2 = 5 [/tex]

Number 5:

  • [tex] \big[x - (\text-6)\big]^2 + \big[y - (\text-3)\big]^2 = (4\sqrt3\,)^2 [/tex]

  • [tex] (x + 6)^2 + (y + 3)^2 = 16(3) [/tex]

  • [tex] (x + 6)^2 + (y + 3)^2 = 48 [/tex]

Number 6:

  • [tex] (x - 0)^2 + (y -6)^2 = 9^2 [/tex]

  • [tex] x^2 + (y - 6)^2 = 81 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

"Part B"

Number 7:

Substitute the given center in the standard form of the equation.

  • [tex] (x - 3)^2 + \big[y - (\text-4)\big]^2 = r^2 [/tex]

  • [tex] (x - 3)^2 + (y + 4)^2 = r^2 [/tex]

Find the square of the radius if it passes through (6,2)

  • [tex] (6 - 3)^2 + (2 + 4)^2 = r^2 [/tex]

  • [tex] (3)^2 + (6)^2 = r^2 [/tex]

  • [tex] 9 + 36 = r^2 [/tex]

  • [tex] 45 = r^2 [/tex]

Substitute the square of the radius to the equation.

  • [tex] (x - 3)^2 + (y + 4)^2 = 45 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

Number 8:

Substitute the given center in the standard form of the equation.

  • [tex] (x - 5)^2 + (y - 1)^2 = r^2 [/tex]

Find the square of the radius if it passes through (8,-2)

  • [tex] (8 - 5)^2 + (\text-2 - 1)^2 = r^2 [/tex]

  • [tex] (3)^2 + (\text-3)^2 = r^2 [/tex]

  • [tex] 9 + 9 = r^2 [/tex]

  • [tex] 18 = r^2 [/tex]

Substitute the square of the radius to the equation.

  • [tex] (x - 5)^2 + (y - 1)^2 = 18 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

Number 9:

Substitute (0,0) as the given center in the standard form of the equation since it is at the origin.

  • [tex] (x - 0)^2 + (y - 0)^2 = r^2 [/tex]

  • [tex] x^2 + y^2 = r^2 [/tex]

Find the square of the radius if it passes through (4,3)

  • [tex] 4^2 + 3^2 = r^2 [/tex]

  • [tex] 16 + 9 = r^2 [/tex]

  • [tex] 25 = r^2 [/tex]

Substitute the square of the radius to the equation.

  • [tex] x^2 + y^2 = 25 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

Number 10:

Find the midpoint between the endpoints because that that would be the center of the circle.

[tex] \begin{align} & \bold{Formula:} \\ & \quad \boxed{\rm Midpoint = \bigg(\frac{x_2+x_1}2,\,\frac{y_2+y_1}2\bigg)} \end{align} [/tex]

  • [tex] \rm Center = \bigg(\frac{\text-4 + 4}2,\, \frac{0+0}2 \bigg) \\ [/tex]

  • [tex] \rm Center = \bigg(\frac{\,0\,}2,\, \frac{\,0\,}2 \bigg) \\ [/tex]

  • [tex] \rm Center = (0,0) [/tex]

Thus, the center is at the origin. Substitute it in the standard form of the equation.

  • [tex] (x - 0)^2 + (y - 0)^2 = r^2 [/tex]

  • [tex] x^2 + y^2 = r^2 [/tex]

Find the square of the radius if it passes through one of the given endpoints of the diameter: (4,0)

  • [tex] 4^2 + 0^2 = r^2 [/tex]

  • [tex] 16 + 0 = r^2 [/tex]

  • [tex] 16 = r^2 [/tex]

Substitute the square of the radius to the equation.

  • [tex] x^2 + y^2 = 16 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ