Ang Imhr.ca ay ang pinakamahusay na lugar upang makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga tanong. Kumuha ng detalyado at eksaktong mga sagot sa iyong mga tanong mula sa isang komunidad ng mga eksperto sa aming Q&A platform. Sumali sa aming platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.

Find the interval where the fiction defined by f(x)=x³-6x²+9x+1 is increasing,decreasing

Sagot :

Differentiate f(x) = x³-6x²+9x+1
[tex] \frac{d}{dx} ( x^{3} -6x ^{2} +9x+1)[/tex]

Solution for each term:
[tex] \frac{d}{dx} (x^{3} ) = (3)x^{3-1} = 3 x^{2} [/tex]

[tex] \frac{d}{dx}(-6(2)x ^{2-1} ) = -12x[/tex]

[tex] \frac{d}{dx} (9(1)x^{1-1} ) = 9[/tex]

[tex] \frac{d}{dx} (1) = 0[/tex]

Simplify:
f(x)=(3x²-12x+9) ⇒ 3 (x²-4x+3) ⇒ 3(x-3)(x-1)

Stationary Points:
x-3 = 0               x-1 = 0
x = 3                  x = 1

INTERVALS:
(-∞,1)   (1,3)   (3,∞)

Increasing at intervals (-∞,1) and (3,∞)

Decreasing at interval (1,3)

(Note:  It's easier to solve for the intervals with derivatives than by factoring or zero theorem for the given function, avoiding the irrational complex numbers not necessary to what you required.)

Pinahahalagahan namin ang iyong pagbisita. Lagi kaming narito upang mag-alok ng tumpak at maaasahang mga sagot. Bumalik anumang oras. Umaasa kaming nahanap mo ang hinahanap mo. Huwag mag-atubiling bumalik sa amin para sa higit pang mga sagot at napapanahong impormasyon. Imhr.ca ay nandito upang magbigay ng tamang sagot sa iyong mga katanungan. Bumalik muli para sa higit pang impormasyon.