Ang Imhr.ca ang pinakamahusay na solusyon para sa mga naghahanap ng mabilis at tumpak na mga sagot sa kanilang mga katanungan. Kumuha ng mabilis at mapagkakatiwalaang solusyon sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang malawak na network ng mga propesyonal.

find the equation and solve for the constant of the variation k.
1. A varies directly as T and S = 12 when T-8
2. E is inversely proportional to the square of F and E = 4 when F-5
3. varies jointly as Q and R, and P=12 when Q-8 and R-3
4. Z varies directly as X and inversely as Y and Z=10 when X-5 and Y=12

this is for my ate, I am answering her modules but I don't know how to answer these, she is sick and her module is due very soon. please help me, I even watched yt videos to answer this. please explain if you can, I really need it.​

Sagot :

ARMYL

Find the equation and solve for the constant of the variation k.

[tex] \\ [/tex]

1. A varies directly as T and A= 12 when T=8

[tex] \\ [/tex]

Equation:

[tex]A = kT \\ [/tex]

-Evaluate the values

[tex]12 = k(8) \\ [/tex]

-Divide both sides to 8, then cancel both 8 from the right side

[tex] \frac{12}{8} = \frac{k(8)}{8} \\ \frac{12}{8} = \frac{k( \cancel8)}{ \cancel8} \\ [/tex]

-Divide 12 by 8

[tex] \green{ \boxed{ \boxed{ \: \: k = \frac{3}{2 \: \: }}}} \\ \\ [/tex]

2. E is inversely proportional to the square of F and E = 4 when F=5

[tex] \\ [/tex]

Equation:

[tex] E = \frac{k}{ {F}^{2} } \\ [/tex]

-Evaluate the given values

[tex]4 = \frac{k}{ {5}^{2} } \\ [/tex]

-Square 5

[tex]4 = \frac{ k}{25} \\ [/tex]

-Multiply 25 to both sides, then cancel both 25 from the right side

[tex](25)(4) = \frac{k}{25} (25) \\ (25)(4) = \frac{k}{( \cancel{25)}} ( \cancel{25}) \\ [/tex]

-Multiply 25 by 4

[tex] \green{ \boxed{ \boxed{ \: \: k = 100 \: \: }}} \\ \\ [/tex]

3. P varies jointly as Q and R, and P=12 when Q=8 and R= 3

Equation:

[tex]P = kQ R \\ [/tex]

-Evaluate the values

[tex]12 = k(8)(3) \\ [/tex]

-Multiply 8 by 3

[tex]12 = k(24) \\ [/tex]

-Divide 24 by both sides, then cancel both 24 from the right side

[tex] \frac{12}{24} = \frac{k(24)}{24} \\ \frac{12}{24} = \frac{k( \cancel{24})}{ \cancel{24}} \\ [/tex]

-Divide 12 by 24

[tex] \green{ \boxed{ \boxed{ \: \: k = \frac{1}{2 } \: \: }}} \: \: \\ \\ [/tex]

4. Z varies directly as X and inversely as Y and Z=10 when X=5 and Y=12

[tex] \\ [/tex]

Equation:

[tex]Z = \frac{kX }{ Y} \\ [/tex]

-Evaluate the values

[tex]10 = \frac{k (5)}{12} \\ [/tex]

-Multiply 12 by both sides, then cancel both 12 from the right side.

[tex](12)(10) = \frac{k(5)}{12} (12) \\ (12)(10) = \frac{k(5)}{ \cancel{12}} ( \cancel{12}) \\ [/tex]

-Multiply 12 by 10

[tex]120 = k(5) \\ [/tex]

-Divide 5 by bith sides, then cancel both 5 from the right side.

[tex] \frac{120}{5} = \frac{k(5)}{5} \\ \frac{120}{5} = \frac{k( \cancel{5})} {\cancel{5}} \\ [/tex]

-Divide 120 by 5

[tex] \green{ \boxed{ \boxed{ \: \: k = 24 \: \: }}} \\ \\ \\ [/tex]