Makakuha ng pinakamahusay na mga solusyon sa iyong mga katanungan sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Sumali sa aming Q&A platform at kumonekta sa mga propesyonal na handang magbigay ng eksaktong sagot sa iyong mga tanong. Tuklasin ang komprehensibong mga solusyon sa iyong mga tanong mula sa isang malawak na hanay ng mga propesyonal sa aming madaling gamitin na platform.

what is the sum of even numbers not more than 30

Sagot :

Sum of even numbers not more than 30. (Not more 30 means 30 is included. Use the symbol ≤)
= {x/x is an even number ≤ 30 }
= {2, 4, ... 30]
The difference (d) between any two consecutive numbers = 2

Steps:
1)  Find the number of terms in a sequence of even numbers up to 30. The pattern/rule is:
[tex]a _{n} = a_{1} +(n-1)(d)[/tex]
where:
 [tex]a _{n} [/tex] = the last term ⇒  30
[tex]a _{1} [/tex] = is the first term  ⇒  2
d (difference) = 2

2)  Solve for n:
30 = 2 + (n - 1) (2)
30 = 2 + 2n - 2
30 = 2n

2n/2 = 30/2
n = 15

The number of terms in the given sequence is 15.

3)  Solve for the sum of the sequence:
[tex]S _{n} = \frac{n}{2} (a _{1} +a _{n} )[/tex]

[tex]S _{n} = \frac{15}{2} (2+30)[/tex]

[tex]S _{n} = \frac{15}{2} (32)[/tex]

[tex]S _{n} = 15(16)[/tex]

[tex]S _{n} = 240[/tex]

The sum of even numbers not more than 30 is 240.

(Note:  I assume that you are reviewing for MTAP, because this is an advance topic for Grade 2 or 3 student.}
Sum of even numbers not more than 30. (Not more 30 means 30 is included. Use the symbol ≤) = {x/x is an even number ≤ 30 } = {2, 4, ... 30] The difference (d) between any two consecutive numbers = 2 Steps: 1)  Find the number of terms in a sequence of even numbers up to 30. The pattern/rule is: where:   = the last term ⇒  30 = is the first term  ⇒  2 d (difference) = 2 2)  Solve for n: 30 = 2 + (n - 1) (2) 30 = 2 + 2n - 2 30 = 2n 2n/2 = 30/2 n = 15 The number of terms in the given sequence is 15. 3)  Solve for the sum of the sequence: The sum of even numbers not more than 30 is 240. (Note:  I assume that you are reviewing for MTAP, because this is an advance topic for Grade 2 or 3 student.}