[tex]\Large\color{aqua}\underline\mathbb{INVERSE \: VARIATION}[/tex]
if y varies inversely as the square of x . if y =8 when x=2,find the value of y when x =4.
[tex]\\[/tex]
y varies inversely as the square of x
To determine the missing value, we should determine first the constant. And to determine the constant, substitute the given first values of x and y to the equation of variation.
[tex]\\[/tex]
Given values:
- y = 8, x = 2
- y = k/x²
- 8 = k/(2)²
- 8 = k/4
- (8)(4) = k
- 32 = k
--------------------------------------------
The constant of variation is given. Now substitute the second given values of x and y to the equation of variation.
- y = ?, x = 4
- y = 32/x²
- y = 32/(4)²
- y = 32/16
- y = 2
[tex]\\[/tex]
[tex]\color{blue}\underline\mathbb{ANSWER:}[/tex]
- ∴ Therefore, the value of y is 2.
======================================
[tex]\tt\color{aqua}{8:55 \: am}[/tex]
[tex]\tt{3/4/22}[/tex]