Ang Imhr.ca ay ang pinakamahusay na lugar upang makakuha ng maaasahang mga sagot sa lahat ng iyong mga tanong. Tuklasin ang komprehensibong mga solusyon sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming madaling gamitin na platform. Kumuha ng mabilis at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming platform.

what value of k will make the system -kx+y=3 and 4x-y=2 a consistent-independent?

Sagot :

Eliminate y:

- kx + y = 3  ⇒  Equation 1
  4x - y =  2  ⇒  Equation 2

-kx : 4x = 3 : 2

-kx (2) = 4x (3)   
-2xk = 12x         

-2xk/-2x = 12x/-2x

k = - 6 

Solve the system, substitute - 6 for k in Equation 1

-(-6)x + y = 3
6x + y = 3
y = -6x + 3  ⇒  Equation 3

Substitute for x by  - 6x + 3 for y in Equation 2:
4x - (-6x + 3) = 2
4x + 6x - 3 = 2
10x = 2 + 5
10x/10 = 5/10
x = 1/2

Solve for y, by substituting 1/2 to x in Equation 3:
y = -6x + 3
y = -6(1/2) + 3
y = - 3 + 3
y = 0

The solution to the system is (1/2, 0).

To check, x = 1/2;   y = 0
Equation 1:  
6x + y = 3
6 (1/2) + 0 = 3
3 + 0 = 3
3 = 3

Equation 2:
4x - y = 2
4 (1/2) - 0 = 2
2 - 0 = 2
2 = 2

Therefore - 6 for k satisfies the system as consistent and independent with only one solution (1/2, 0) which is the point of intersection of the given two equations/graphs.



Umaasa kaming naging kapaki-pakinabang ang aming mga sagot. Bumalik anumang oras para sa higit pang tumpak na mga sagot at napapanahong impormasyon. Umaasa kaming nahanap mo ang hinahanap mo. Huwag mag-atubiling bumalik sa amin para sa higit pang mga sagot at napapanahong impormasyon. Maraming salamat sa paggamit ng Imhr.ca. Bumalik muli para sa karagdagang kaalaman mula sa aming mga eksperto.