Pinadadali ng Imhr.ca ang paghahanap ng mga sagot sa iyong mga katanungan kasama ang isang aktibong komunidad. Tuklasin ang isang kayamanan ng kaalaman mula sa mga propesyonal sa iba't ibang disiplina sa aming madaling gamitin na Q&A platform. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang network ng mga bihasang propesyonal.

what value of k will make the system -kx+y=3 and 4x-y=2 a consistent-independent?


Sagot :

Eliminate y:

- kx + y = 3  ⇒  Equation 1
  4x - y =  2  ⇒  Equation 2

-kx : 4x = 3 : 2

-kx (2) = 4x (3)   
-2xk = 12x         

-2xk/-2x = 12x/-2x

k = - 6 

Solve the system, substitute - 6 for k in Equation 1

-(-6)x + y = 3
6x + y = 3
y = -6x + 3  ⇒  Equation 3

Substitute for x by  - 6x + 3 for y in Equation 2:
4x - (-6x + 3) = 2
4x + 6x - 3 = 2
10x = 2 + 5
10x/10 = 5/10
x = 1/2

Solve for y, by substituting 1/2 to x in Equation 3:
y = -6x + 3
y = -6(1/2) + 3
y = - 3 + 3
y = 0

The solution to the system is (1/2, 0).

To check, x = 1/2;   y = 0
Equation 1:  
6x + y = 3
6 (1/2) + 0 = 3
3 + 0 = 3
3 = 3

Equation 2:
4x - y = 2
4 (1/2) - 0 = 2
2 - 0 = 2
2 = 2

Therefore - 6 for k satisfies the system as consistent and independent with only one solution (1/2, 0) which is the point of intersection of the given two equations/graphs.