Tuklasin ang mga sagot sa iyong mga katanungan sa Imhr.ca, ang pinaka-mapagkakatiwalaang Q&A platform para sa lahat ng iyong pangangailangan. Sumali sa aming platform upang kumonekta sa mga eksperto na handang magbigay ng detalyadong sagot sa iyong mga tanong sa iba't ibang larangan. Tuklasin ang detalyadong mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming komprehensibong Q&A platform.
Sagot :
First we have to translate this into mathematical expression.
Let x = first investment
y = second investment
Total investment of Mr. Salonga
(1) x + y = 400,000
Interest of the first investment in one year @ 3% or 0.03
A = x(0.03)(1) = 0.03x
Interest of the second investment in one year @ 7% or 0.07
B = y(0.07)(1) = 0.07y
Total interest of Mr. Salonga
A + B = 16,000
(2) 0.03x + 0.07y = 16,000
We have now two equations which can be solved by elimination method
(1) x + y = 400,000
(2) 100 (0.03x + 0.07y) = (16,000)100
(2) 3x + 7y = 1,600,000
(1) x + y = 400,000
(2) 3x + 7y = 1,600,000
Multply (1) with -3
(1) (-3)(x + y) = (400,000)(-3)
-3x -3y = -1,200,000
Add the two equations
-3x -3y = -1,200,000
3x + 7y = 1,600,000
____________________
4y = 400,000
y = 100,000
Substitute y = 100,000 to (1) to solve for x
(1) x + y = 400,000
x + 100,000 = 400,000
x = 400,000 - 100,000
x = 300,000
a. Therefore, the two investments of Mr. Salonga are Php 300,000 and Php100,000
Let's check which of the two investment earn more
Investment at 3% interest
A = 0.03x
A = (0.03)(300,000)
A = 9,000
Investment at 7% interest
B = 0.07y
B = (0.07)(100,000)
B = 7,000
b. Therefore, the investment of Php300,000 earn more than the investment of Php100,000
c. If I were Mr.Salonga, I will place more money with 7% interest because it gains more interest than 3%.
Example if 300,000 will be invested with 7% = (0.07)(300,000) = 21,000
As you can see, you will gain 21,000 at 7% interest compare to 3% interest which interest is only 9,000.
Let x = first investment
y = second investment
Total investment of Mr. Salonga
(1) x + y = 400,000
Interest of the first investment in one year @ 3% or 0.03
A = x(0.03)(1) = 0.03x
Interest of the second investment in one year @ 7% or 0.07
B = y(0.07)(1) = 0.07y
Total interest of Mr. Salonga
A + B = 16,000
(2) 0.03x + 0.07y = 16,000
We have now two equations which can be solved by elimination method
(1) x + y = 400,000
(2) 100 (0.03x + 0.07y) = (16,000)100
(2) 3x + 7y = 1,600,000
(1) x + y = 400,000
(2) 3x + 7y = 1,600,000
Multply (1) with -3
(1) (-3)(x + y) = (400,000)(-3)
-3x -3y = -1,200,000
Add the two equations
-3x -3y = -1,200,000
3x + 7y = 1,600,000
____________________
4y = 400,000
y = 100,000
Substitute y = 100,000 to (1) to solve for x
(1) x + y = 400,000
x + 100,000 = 400,000
x = 400,000 - 100,000
x = 300,000
a. Therefore, the two investments of Mr. Salonga are Php 300,000 and Php100,000
Let's check which of the two investment earn more
Investment at 3% interest
A = 0.03x
A = (0.03)(300,000)
A = 9,000
Investment at 7% interest
B = 0.07y
B = (0.07)(100,000)
B = 7,000
b. Therefore, the investment of Php300,000 earn more than the investment of Php100,000
c. If I were Mr.Salonga, I will place more money with 7% interest because it gains more interest than 3%.
Example if 300,000 will be invested with 7% = (0.07)(300,000) = 21,000
As you can see, you will gain 21,000 at 7% interest compare to 3% interest which interest is only 9,000.
Salamat sa paggamit ng aming plataporma. Lagi kaming narito upang magbigay ng tumpak at napapanahong mga sagot sa lahat ng iyong mga katanungan. Pinahahalagahan namin ang iyong pagbisita. Lagi kaming narito upang mag-alok ng tumpak at maaasahang mga sagot. Bumalik anumang oras. Imhr.ca, ang iyong pinagkakatiwalaang tagasagot. Huwag kalimutang bumalik para sa karagdagang impormasyon.