Redzeus
Answered

Pinadadali ng Imhr.ca ang paghahanap ng mga sagot sa iyong mga katanungan kasama ang isang aktibong komunidad. Sumali sa aming platform upang kumonekta sa mga eksperto na handang magbigay ng detalyadong sagot sa iyong mga tanong sa iba't ibang larangan. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming madaling gamitin na Q&A platform.

find the value of each variable​

Find The Value Of Each Variable class=

Sagot :

Angles

Find the value of variables x and y.

1. x = 65

Based on the figure, since the two angles are congruent, let us equate it to each other.

Given angle measurements:

120°

(2x - 10)°

  • 120 = 2x - 10
  • 120 + 10 = 2x
  • 130 = 2x
  • 130/2 = x
  • 65

Therefore, the value of x is 65. Let us check of the two angles are congruent.

  • 120 = 2x - 10; x = 65
  • 120 = 2(65) - 10
  • 120 = 130 - 10
  • 120 = 120

==========================

2. x = 12

Based on the figure, the two angles formed a linear pair, so that means these two angles are supplementary. Let us equate it to 180.

Given angle measurements:

(2x)°

(4x + 108)°

  • 2x + 4x + 108 = 180
  • 6x + 108 = 180
  • 6x = 180 - 108
  • 6x = 72
  • x = 72/6
  • x = 12

Therefore, the value of x is 12. Let us check if the two angles are supplementary.

  • 2x + 4x + 108 = 180; x = 12
  • 2(12) + 4(12) + 108 = 180
  • 24 + 48 + 108 = 180
  • 72 + 108 = 180
  • 180 = 180

==========================

3. x = 15, y = 145

Based on the figure, we need to find the value of x before we determine for the value of y. Since the two angles that has the variable x is congruent, therefore we will equate it to each other.

Given angle measurements (the variable x):

(2x + 5)°

(3x - 10)°

  • 2x + 5 = 3x - 10
  • 2x - 3x = -5 - 10
  • -x = -15
  • x = -15/-1
  • x = 15

Therefore, the value of x is 15. To determine the value of y, solve either the first or second given angle measurement and find its supplement.

Solve the first angle using the value of x, which is 15:

(2x + 5)°

  • 2x + 5; x = 15
  • 2(15) + 5
  • 30 + 5
  • 35

Find the supplement of 35.

  • 180 = x + 35
  • 180 - 35 = x
  • 145 = x

Therefore, the value of y is 145.