Maligayang pagdating sa Imhr.ca, kung saan ang iyong mga tanong ay masasagot ng mga eksperto at may karanasang miyembro. Itanong ang iyong mga katanungan at makakuha ng eksaktong sagot mula sa mga propesyonal na may malawak na karanasan sa iba't ibang larangan. Maranasan ang kadalian ng paghahanap ng eksaktong sagot sa iyong mga tanong mula sa isang malawak na komunidad ng mga eksperto.

The area of a rectangular garden is 48 square feet. How much fencing will be needed to enclose it if its length is 2 feet longer than its width?

Sagot :

the answer is 28.

divide 48 with 2 one-digit numbers. in which the other one is greater than 2 then try and multiply them to get the the answer 48.

EX:
1x3 ; 2x4 ; 3x5 an so on.. 

when you get the answer 48 it would be 6x8. what you do with this is get the perimeter. the equation for getting a perimeter is 2l+2w. 6 is the widht and 8 is the lentgh

P= 2l + 2w
  = 8+8+6+6
  = 28
Width: x
Lenght:  x+ 2
Area: 48 ft²

Area = (Width) (Length)
48 = (x)(x+2)
48 = x² + 2x

Quadratic Equation, ax² bx + c = 0
x² + 2x - 48 = 0
Factor:
(x + 8) (x - 6) = 0

x + 8 = 0                 x - 6 = 0
x = -8                      x = 6

Choose the positive root, x = 6

Dimensions:
Width, x = 6 ft.
Length, x + 2 = 6 + 2 = 8 ft.

Fencing needed (Perimeter of the rectangular garden):
Perimeter = 2 (Width) + 2 (Length)
P = 2 (6 ft) + 2 (8 ft)
P = 12 ft. + 16 ft.
P = 28 ft.

ANSWER:  28 ft.