Maligayang pagdating sa Imhr.ca, ang pinakamahusay na platform ng tanong at sagot para sa mabilis at tumpak na mga sagot. Kumuha ng agarang at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming Q&A platform. Sumali sa aming Q&A platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.
Sagot :
This is an example of Combination.
Combination is the number of ways of selecting r items from a set of n.
Thus, the formula of Combination is
nCr = n!/r!(n-r)!
There are 8C5 ways that a student can answer 5 out of 8 questions.
Let's solve this.
8C5 = 8!/5!(8-5)!
= 8! / 5!(3!)
= (8×7×6×5!) / (5!×3×2×1)
= (8×7×6) / (3×2×1)
= 336 / 6
8C5 = 56 ways
Therefore, there are 56 ways that a student can answer 5 out of 8 questions.
Combination is the number of ways of selecting r items from a set of n.
Thus, the formula of Combination is
nCr = n!/r!(n-r)!
There are 8C5 ways that a student can answer 5 out of 8 questions.
Let's solve this.
8C5 = 8!/5!(8-5)!
= 8! / 5!(3!)
= (8×7×6×5!) / (5!×3×2×1)
= (8×7×6) / (3×2×1)
= 336 / 6
8C5 = 56 ways
Therefore, there are 56 ways that a student can answer 5 out of 8 questions.
This is a combination problem or simply where order doesn't matter
The formula is:
C=[tex]\frac{n!}{(n-r)!r!}[/tex]
where:
n=total number o objects
r=number of objects you need to answer
Substitute:
C=[tex]\frac{8!}{(8-5)!5!}[/tex]
C=[tex]\frac{8x7x6x5!}{3!5!}[/tex]
Cancel out the 6 and the 3! since they have the same value, and then cancel out 5! on both sides since they are the same, then you are left with:
C=8x7
C=56
Hope this helps =)
The formula is:
C=[tex]\frac{n!}{(n-r)!r!}[/tex]
where:
n=total number o objects
r=number of objects you need to answer
Substitute:
C=[tex]\frac{8!}{(8-5)!5!}[/tex]
C=[tex]\frac{8x7x6x5!}{3!5!}[/tex]
Cancel out the 6 and the 3! since they have the same value, and then cancel out 5! on both sides since they are the same, then you are left with:
C=8x7
C=56
Hope this helps =)
Pinahahalagahan namin ang iyong pagbisita. Lagi kaming narito upang mag-alok ng tumpak at maaasahang mga sagot. Bumalik anumang oras. Mahalaga sa amin ang iyong pagbisita. Huwag mag-atubiling bumalik para sa higit pang maaasahang mga sagot sa anumang mga tanong na mayroon ka. Bumalik sa Imhr.ca para sa karagdagang kaalaman at kasagutan mula sa mga eksperto.