Ang Imhr.ca ay narito upang tulungan kang makahanap ng mga sagot sa lahat ng iyong mga katanungan mula sa mga eksperto. Kumuha ng mga sagot na kailangan mo nang mabilis at eksakto mula sa dedikadong komunidad ng mga eksperto sa aming platform. Tuklasin ang detalyadong mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming komprehensibong Q&A platform.
Sagot :
y = ax² + bx + c ⇒ y = f(x)
f(x) = ax² + bx + c
Given: x² - 12y + 5 = 0
Convert to y = ax² + bx + c
x² - 12y + 5 = 0
x² + 5 = 12y
12y = x² + 5
12y/12 = x²/12 + 5/12
y = [tex] \frac{ x^{2} }{12} + \frac{5}{12} [/tex]
A.) Set y to = 0
[tex] \frac{ x^{2} }{12} + \frac{5}{12} =0[/tex]
Solve for roots (zeroes) using the method extracting the square roots.
Use this method when b = 0 in equation ax² + bx + c = 0.
[tex]12( \frac{ x^{2} }{12} + \frac{5}{12} =0)[/tex]
x² + 5 = 0
x² = -5
[tex] \sqrt{ x^{2} } = \frac{+}{-} \sqrt{-5} [/tex]
x₁ = [tex]i \sqrt{5} [/tex]
x₂ = [tex]-i \sqrt{5} [/tex]
THE ZEROES (ROOTS) are [tex]i \sqrt{5} [/tex] and [tex]-i \sqrt{5} [/tex].
It means that the equation has no real roots, and the graph (parabola) that opens upward is above the x-axis.
B.) Find the vertex of the parabola.
Since the equation has a positive leading leading term ([tex] \frac{ x^{2} }{12} [/tex]), the parabola opens upward (u-shaped), and the vertex is the minimum.
Vertex = (h, k)
h = [tex] \frac{-b}{2a} [/tex]
h = [tex] \frac{0}{2( \frac{1}{12}) } [/tex]
h = 0
k = f(h)
Plug -in the value of h (0) to x in equation [tex] \frac{x ^{2} }{12} + \frac{5}{12} [/tex]
k = [tex] \frac{0 ^{2} }{12} + \frac{5}{12} [/tex]
k = 0 + ⁵/₁₂
k = ⁵/₁₂
Vertex = (h, k)
Vertex = (0, ⁵/₁₂)
FINAL ANSWER: The vertex is (0, ⁵/₁₂) and the zeroes (roots) are [tex]i \sqrt{5} [/tex] and [tex]-i \sqrt{5} [/tex].
Please click image to see the graph of the given equation.
f(x) = ax² + bx + c
Given: x² - 12y + 5 = 0
Convert to y = ax² + bx + c
x² - 12y + 5 = 0
x² + 5 = 12y
12y = x² + 5
12y/12 = x²/12 + 5/12
y = [tex] \frac{ x^{2} }{12} + \frac{5}{12} [/tex]
A.) Set y to = 0
[tex] \frac{ x^{2} }{12} + \frac{5}{12} =0[/tex]
Solve for roots (zeroes) using the method extracting the square roots.
Use this method when b = 0 in equation ax² + bx + c = 0.
[tex]12( \frac{ x^{2} }{12} + \frac{5}{12} =0)[/tex]
x² + 5 = 0
x² = -5
[tex] \sqrt{ x^{2} } = \frac{+}{-} \sqrt{-5} [/tex]
x₁ = [tex]i \sqrt{5} [/tex]
x₂ = [tex]-i \sqrt{5} [/tex]
THE ZEROES (ROOTS) are [tex]i \sqrt{5} [/tex] and [tex]-i \sqrt{5} [/tex].
It means that the equation has no real roots, and the graph (parabola) that opens upward is above the x-axis.
B.) Find the vertex of the parabola.
Since the equation has a positive leading leading term ([tex] \frac{ x^{2} }{12} [/tex]), the parabola opens upward (u-shaped), and the vertex is the minimum.
Vertex = (h, k)
h = [tex] \frac{-b}{2a} [/tex]
h = [tex] \frac{0}{2( \frac{1}{12}) } [/tex]
h = 0
k = f(h)
Plug -in the value of h (0) to x in equation [tex] \frac{x ^{2} }{12} + \frac{5}{12} [/tex]
k = [tex] \frac{0 ^{2} }{12} + \frac{5}{12} [/tex]
k = 0 + ⁵/₁₂
k = ⁵/₁₂
Vertex = (h, k)
Vertex = (0, ⁵/₁₂)
FINAL ANSWER: The vertex is (0, ⁵/₁₂) and the zeroes (roots) are [tex]i \sqrt{5} [/tex] and [tex]-i \sqrt{5} [/tex].
Please click image to see the graph of the given equation.

Salamat sa paggamit ng aming plataporma. Lagi kaming narito upang magbigay ng tumpak at napapanahong mga sagot sa lahat ng iyong mga katanungan. Salamat sa iyong pagbisita. Kami ay nakatuon sa pagbibigay sa iyo ng pinakamahusay na impormasyon na magagamit. Bumalik anumang oras para sa higit pa. Bisitahin muli ang Imhr.ca para sa pinakabagong sagot at impormasyon mula sa mga eksperto.