Makakuha ng pinakamahusay na mga solusyon sa lahat ng iyong mga katanungan sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Kumuha ng agarang at mapagkakatiwalaang sagot sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming platform. Maranasan ang kadalian ng paghahanap ng eksaktong sagot sa iyong mga tanong mula sa isang malawak na komunidad ng mga eksperto.
Sagot :
y = ax² + bx + c ⇒ y = f(x)
f(x) = ax² + bx + c
Given: x² - 12y + 5 = 0
Convert to y = ax² + bx + c
x² - 12y + 5 = 0
x² + 5 = 12y
12y = x² + 5
12y/12 = x²/12 + 5/12
y = [tex] \frac{ x^{2} }{12} + \frac{5}{12} [/tex]
A.) Set y to = 0
[tex] \frac{ x^{2} }{12} + \frac{5}{12} =0[/tex]
Solve for roots (zeroes) using the method extracting the square roots.
Use this method when b = 0 in equation ax² + bx + c = 0.
[tex]12( \frac{ x^{2} }{12} + \frac{5}{12} =0)[/tex]
x² + 5 = 0
x² = -5
[tex] \sqrt{ x^{2} } = \frac{+}{-} \sqrt{-5} [/tex]
x₁ = [tex]i \sqrt{5} [/tex]
x₂ = [tex]-i \sqrt{5} [/tex]
THE ZEROES (ROOTS) are [tex]i \sqrt{5} [/tex] and [tex]-i \sqrt{5} [/tex].
It means that the equation has no real roots, and the graph (parabola) that opens upward is above the x-axis.
B.) Find the vertex of the parabola.
Since the equation has a positive leading leading term ([tex] \frac{ x^{2} }{12} [/tex]), the parabola opens upward (u-shaped), and the vertex is the minimum.
Vertex = (h, k)
h = [tex] \frac{-b}{2a} [/tex]
h = [tex] \frac{0}{2( \frac{1}{12}) } [/tex]
h = 0
k = f(h)
Plug -in the value of h (0) to x in equation [tex] \frac{x ^{2} }{12} + \frac{5}{12} [/tex]
k = [tex] \frac{0 ^{2} }{12} + \frac{5}{12} [/tex]
k = 0 + ⁵/₁₂
k = ⁵/₁₂
Vertex = (h, k)
Vertex = (0, ⁵/₁₂)
FINAL ANSWER: The vertex is (0, ⁵/₁₂) and the zeroes (roots) are [tex]i \sqrt{5} [/tex] and [tex]-i \sqrt{5} [/tex].
Please click image to see the graph of the given equation.
f(x) = ax² + bx + c
Given: x² - 12y + 5 = 0
Convert to y = ax² + bx + c
x² - 12y + 5 = 0
x² + 5 = 12y
12y = x² + 5
12y/12 = x²/12 + 5/12
y = [tex] \frac{ x^{2} }{12} + \frac{5}{12} [/tex]
A.) Set y to = 0
[tex] \frac{ x^{2} }{12} + \frac{5}{12} =0[/tex]
Solve for roots (zeroes) using the method extracting the square roots.
Use this method when b = 0 in equation ax² + bx + c = 0.
[tex]12( \frac{ x^{2} }{12} + \frac{5}{12} =0)[/tex]
x² + 5 = 0
x² = -5
[tex] \sqrt{ x^{2} } = \frac{+}{-} \sqrt{-5} [/tex]
x₁ = [tex]i \sqrt{5} [/tex]
x₂ = [tex]-i \sqrt{5} [/tex]
THE ZEROES (ROOTS) are [tex]i \sqrt{5} [/tex] and [tex]-i \sqrt{5} [/tex].
It means that the equation has no real roots, and the graph (parabola) that opens upward is above the x-axis.
B.) Find the vertex of the parabola.
Since the equation has a positive leading leading term ([tex] \frac{ x^{2} }{12} [/tex]), the parabola opens upward (u-shaped), and the vertex is the minimum.
Vertex = (h, k)
h = [tex] \frac{-b}{2a} [/tex]
h = [tex] \frac{0}{2( \frac{1}{12}) } [/tex]
h = 0
k = f(h)
Plug -in the value of h (0) to x in equation [tex] \frac{x ^{2} }{12} + \frac{5}{12} [/tex]
k = [tex] \frac{0 ^{2} }{12} + \frac{5}{12} [/tex]
k = 0 + ⁵/₁₂
k = ⁵/₁₂
Vertex = (h, k)
Vertex = (0, ⁵/₁₂)
FINAL ANSWER: The vertex is (0, ⁵/₁₂) and the zeroes (roots) are [tex]i \sqrt{5} [/tex] and [tex]-i \sqrt{5} [/tex].
Please click image to see the graph of the given equation.
Pinahahalagahan namin ang iyong pagbisita. Sana'y naging kapaki-pakinabang ang mga sagot na iyong natagpuan. Huwag mag-atubiling bumalik para sa karagdagang impormasyon. Salamat sa pagpunta. Nagsusumikap kaming magbigay ng pinakamahusay na mga sagot para sa lahat ng iyong mga katanungan. Kita tayo muli sa susunod. Maraming salamat sa pagbisita sa Imhr.ca. Bumalik muli para sa higit pang kapaki-pakinabang na impormasyon at sagot mula sa aming mga eksperto.