Ang Imhr.ca ay ang pinakamahusay na lugar upang makakuha ng maaasahang mga sagot sa lahat ng iyong mga tanong. Kumonekta sa mga propesyonal na handang magbigay ng eksaktong sagot sa iyong mga tanong sa aming komprehensibong Q&A platform. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming madaling gamitin na Q&A platform.
Sagot :
There are two ways to find the radius of circumscribing circle of a triangle (triangle inside the circle and whose three vertices are on the circle).
Choose one that you can easily remember:
Method A:
1.) Find the semi-perimeter (s) of the triangle, where a, b, and c are the sides
of the triangle:
s = (a + b+ c) ÷ 2
2.) Solve for the radius (r) given the semi-perimeter (s) of the triangle, and the
the sides a, b, and c:
r = [tex] \frac{abc}{4 \sqrt{s(s-a)(s-b)(s-c)} } [/tex]
Solution using Method A:
a = 80 cm; b = 100 cm; c = 140 cm
Find the triangle's semi-perimeter: (half of the triangle's perimeter)
s = (80 + 100 + 140) ÷ 2
s = 320 cm ÷ 2
s = 160 cm
Solve for radius given the semi-perimeter (160 cm) and sides a, b, c:
r = (abc) ÷ [tex]4 \sqrt{s(s-a)(s-b)(s-c)} [/tex]
r = [tex] \frac{(80cm)(100cm)(140cm)}{4 \sqrt{140cm(160cm-80cm)(160cm-100cm)(160cm-140cm)} } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{4 \sqrt{(160cm)(80cm)(60cm)(20cm)} } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{4 \sqrt{15,360,000cm ^{4} } } [/tex]
r =[tex] \frac{1,120,000cm ^{3} }{4 (3,919.18cm ^{2}) } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{15,676.72cm ^{2} } [/tex]
r ≈ 71.44 cm
ANSWER: The radius of circumscribing circle is 71.44 cm.
Method B:
r = [tex] \frac{abc}{ \sqrt{(a+b+c)(b+c-a)(c+a-b)(a+b-a)} } [/tex]
Substitute the given measurements of sides a, b and, c, then evaluate.
The result is the same.
Choose one that you can easily remember:
Method A:
1.) Find the semi-perimeter (s) of the triangle, where a, b, and c are the sides
of the triangle:
s = (a + b+ c) ÷ 2
2.) Solve for the radius (r) given the semi-perimeter (s) of the triangle, and the
the sides a, b, and c:
r = [tex] \frac{abc}{4 \sqrt{s(s-a)(s-b)(s-c)} } [/tex]
Solution using Method A:
a = 80 cm; b = 100 cm; c = 140 cm
Find the triangle's semi-perimeter: (half of the triangle's perimeter)
s = (80 + 100 + 140) ÷ 2
s = 320 cm ÷ 2
s = 160 cm
Solve for radius given the semi-perimeter (160 cm) and sides a, b, c:
r = (abc) ÷ [tex]4 \sqrt{s(s-a)(s-b)(s-c)} [/tex]
r = [tex] \frac{(80cm)(100cm)(140cm)}{4 \sqrt{140cm(160cm-80cm)(160cm-100cm)(160cm-140cm)} } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{4 \sqrt{(160cm)(80cm)(60cm)(20cm)} } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{4 \sqrt{15,360,000cm ^{4} } } [/tex]
r =[tex] \frac{1,120,000cm ^{3} }{4 (3,919.18cm ^{2}) } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{15,676.72cm ^{2} } [/tex]
r ≈ 71.44 cm
ANSWER: The radius of circumscribing circle is 71.44 cm.
Method B:
r = [tex] \frac{abc}{ \sqrt{(a+b+c)(b+c-a)(c+a-b)(a+b-a)} } [/tex]
Substitute the given measurements of sides a, b and, c, then evaluate.
The result is the same.
Salamat sa paggamit ng aming plataporma. Lagi kaming narito upang magbigay ng tumpak at napapanahong mga sagot sa lahat ng iyong mga katanungan. Salamat sa iyong pagbisita. Kami ay nakatuon sa pagbibigay sa iyo ng pinakamahusay na impormasyon na magagamit. Bumalik anumang oras para sa higit pa. Maraming salamat sa paggamit ng Imhr.ca. Bumalik muli para sa karagdagang kaalaman mula sa aming mga eksperto.