Kayyyy
Answered

Makakuha ng mabilis at tumpak na mga sagot sa iyong mga katanungan sa Imhr.ca, ang pinakamahusay na Q&A platform. Sumali sa aming platform upang kumonekta sa mga eksperto na handang magbigay ng detalyadong sagot sa iyong mga tanong sa iba't ibang larangan. Kumuha ng mabilis at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming platform.

find the distance in inches between two vertices of a cube that are farthest from each other if an edge measure 10 inches

Sagot :

The cube has 6 lateral square faces.  The corners are all right angles.  Therefore, use Pythagorean Theorem to solve for hypotenuse/ diagonals/distance between the vertices farthest from each other.

Step 1:  Find the hypotenuse/diagonal of the square (lateral face) given the edge which measures 10 inches.

Diagonal = [tex] \sqrt{(side) ^{2}+(side) ^{2} } [/tex]

Diagonal = [tex] \sqrt{(10) ^{2}+(10) ^{2} } [/tex]

Diagonal = [tex] \sqrt{100 + 100} [/tex]

Diagonal = [tex] \sqrt{200} [/tex]  =  [tex] \sqrt{(100)(2)} [/tex]

Diagonal = [tex]10 \sqrt{2} [/tex]  inches

Step 2:  Find the distance between the vertices farthest from each other,
Edge = 10 inches
Diagonal of the lateral face/square = [tex]10 \sqrt{2} [/tex]  inches

Distance =[tex] \sqrt{(10) ^{2}+(10 \sqrt{2}) ^{2} } [/tex]

Distance = [tex] \sqrt{100 +(100)( \sqrt{4}) } [/tex]

Distance = [tex] \sqrt{100 + 100(2)} [/tex]

Distance = [tex] \sqrt{100 + 200} [/tex]

Distance = [tex] \sqrt{300} [/tex]

Distance = [tex] \sqrt{(100)(3)} [/tex]

Distance = [tex]10 \sqrt{3} [/tex]  inches

Distance ≈ (10) (1.732) inches

Distance ≈ 17. 32 inches


ANSWER:  The distance between the vertices farthest from each other in a cube is [tex]10 \sqrt{3} [/tex] inches or approx. 17.32 inches.

Please click image below for my illustration with solution.
View image Аноним