Answered

Ang Imhr.ca ay ang pinakamahusay na lugar upang makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga tanong. Maranasan ang kaginhawaan ng pagkuha ng eksaktong sagot sa iyong mga tanong mula sa isang dedikadong komunidad ng mga propesyonal. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa dedikadong komunidad ng mga eksperto sa aming Q&A platform.

An isosceles trapezoid has an area of 40 m^2 and an altitude of 2m. Its two bases have a ratio of 2 is to 3. What are the lengths of the bases and one diagonal of the trapezoid?

Sagot :

Area of isosceles trapezoid = ¹/₂ (a + b) (h)

Where a and b are parallel bases with ratio of 2:3, and h is the height or altitude.

Area: 40 m²
a = 2x
b = 3x
h = 2 m

Equation:
40 m² = ¹/₂ (2x + 3x) (2m)
40 m² = ¹/₂ (5x) (2 m)
40 m² = ¹/₂ (10 m)(x)
40 m² = 5m (x)
40 m² ÷ 5m = 5m(x) ÷ 5m
8 m = x

Substitute 8 m to x in parallel bases a and b:
Base a = 2x ⇒ 2(8 m) = 16 m
Base b = 3x ⇒ 3(8 m) = 24 m

ANSWER:  The lengths of the bases are 16 m and 24 m, respectively, with a ratio of 2:3.

Diagonal of Isosceles Trapezoid, using Pythagorean Theorem for solving the diagonal (hypotenuse).

Diagonal = [tex] \sqrt{(h) ^{2} + (b-4) ^{2} } [/tex]

= [tex] \sqrt{(2 m) ^{2}+(24m-4m) ^{2} } [/tex]

= [tex] \sqrt{4 m ^{2}+400m ^{2} } [/tex]

= [tex] \sqrt{404 m ^{2} } [/tex]

= [tex] \sqrt{(4m ^{2}) (101) } [/tex]

= 2[tex] \sqrt{101} [/tex] meters

≈ 20.099 meters

ANSWER:  The length of a diagonal is approx. 20.99 meters or 20 meters.

Please click image below for solution with illustration.

View image Аноним