Maligayang pagdating sa Imhr.ca, ang pinakamahusay na platform ng tanong at sagot para sa mabilis at tumpak na mga sagot. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang network ng mga bihasang propesyonal. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa isang komunidad ng mga eksperto sa aming komprehensibong Q&A platform.

The ratio of the volumes of two similar rectangular prisms is 125: 64. what is the ratio of their base areas? ​

Sagot :

[tex]\large\mathsf{MATHEMATICS}[/tex]

___________________________

PROBLEM:

The ratio of the volumes of two similar rectangular prisms is 125:64. What is the ratio of their base areas?

ANSWER:

[tex] \frac{A1}{A2} = \frac{25}{16} [/tex]

SOLUTION:

[tex] \sqrt[3]{ \frac{V1}{V2} } = \sqrt[2]{ \frac{A1}{A2} } = \frac{S1}{S1} [/tex]

[tex] \sqrt[3]{ \frac{125}{64} } = \sqrt[2]{ \frac{A1}{A2} } [/tex]

[tex] \frac{A1}{A2} = \frac{25}{16} [/tex]

___________________________

#CarryOnLearning

#2ndAccNi@LadyTrisha

The formula for volume of rectangular prism is L×H×W. Based on the formula, we can actually consider the prism as a cube since we are talking about the ratio. Therefore, we have to take the cube root of each.

  • cube root of 125: 5
  • cube root of 64: 4

Then, square the ratio of corresponding sides because of formula L×W.

25:16

The ratio of the bases is 25:16.