Makakuha ng pinakamahusay na mga solusyon sa iyong mga katanungan sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Tuklasin ang isang kayamanan ng kaalaman mula sa mga propesyonal sa iba't ibang disiplina sa aming madaling gamitin na Q&A platform. Maranasan ang kaginhawaan ng paghahanap ng eksaktong sagot sa iyong mga tanong mula sa mga bihasang propesyonal sa aming platform.
Sagot :
ANSWER:
[tex]\boxed{ \bold{ \: I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{x }{ \sqrt{3 (x - 1} )} ) + c }}[/tex]
SOLUTION:
[tex]\tt \:\int \: \frac{ x + 2 }{( {x}^{2} + 3x + 3) \sqrt{x + 1}} \: dx \\ [/tex]
First, let's take I as [tex] \implies[/tex] [tex]\tt \:\int \: \frac{ x + 2 }{( {x}^{2} + 3x + 3) \sqrt{x + 1}} \: dx \\[/tex].
[tex]\tt \:I = \int \: \frac{ x + 2 }{( {x}^{2} + 3x + 3) \sqrt{x +1}} \: dx \\\tt \: I =\int \: \frac{ x + 2 }{( {x}^{2} + 2x + 1 + x + 2) \sqrt{x + 1}} \: dx \\ \tt \:I =\int \: \frac{ x + 2 }{( ({x + 1}^{2}) + x + 2) \sqrt{x + 1}}[/tex]
Let, x + 1 = m² [tex] \implies[/tex] dx = 2mdm.
[tex]\tt \:I =\int \: \frac{ {m}^{2} + 1}{ {m}^{4} + {m}^{2} + 1 \cdot \: m} 2mdm \\ \tt \:I =\int \: \frac{ {m}^{2} + 1}{ {m}^{4} + {m}^{2} + 1 \cdot \: \bcancel{ m}} 2 \bcancel{m}dm \\ \tt \: I = \: \int \: \frac{ {m}^{2} + 1}{ {m}^{4} + {m}^{2} + 1 } 2dm[/tex]
Now, divide the numerator & denominator by m²...we'll get it as...
[tex]\tt \:I =2\int \: \frac{ 1 + \frac{1}{ {m}^{2} } }{ {m}^{2} + 1 + \frac{1}{ {m}^{2} } } \: dm \\\tt \: I =2\int \: \frac{ 1 + \frac{1}{ {m}^{2} } }{( {m}^{2} + \frac{1}{ {m}^{2} } - 2) + 3} \: dm \\\tt \: I =2\int \: \frac{ (1 + \frac{1}{ {m}^{2} }) \: dm }{ ({m} - \frac{1}{ m } ) ^{2} + 3}[/tex]
Now, let m - 1/m be t [tex] \implies[/tex] (1 + 1/m²) dm = dt
[tex]\tt \:I =2\int \: \frac{ dt}{ {t}^{2} + 3 } \\ \tt \:I = 2\int \: \frac{ dt}{ {t}^{2} + ( \sqrt{3}) ^{2} }[/tex]
We know, [tex]\tt \:\int \: \frac{dx}{ {x}^{2} + a ^{2} } = \frac{1}{a} tan ^{ - 1} (\frac{x}{a} ) + c[/tex] ...therefore...
[tex]\tt \:I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{t}{ \sqrt{3} } ) + c \: \rightarrow \boxed{ \tt \: eq. \: 1} [/tex]
Now, substitute the value of 't' in eq. 1..we'll get..
[tex]\tt \:I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{m - \frac{1}{m} }{ \sqrt{3} } ) + c \: \rightarrow \boxed{ \tt \: eq. \: 2}[/tex]
Now, substitute the value of 'm' in eq. 2...we'll get...
[tex]\tt \: I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{ \sqrt{x + 1} - \frac{1}{ \sqrt{x - 1} } }{ \sqrt{3} } ) + c \\ \tt \:I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{x + 1 - 1}{ \sqrt{3} \sqrt{x - 1} } ) + c \\ \boxed{\boxed{ \bold{ \: I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{x }{ \sqrt{3 (x - 1} )} ) + c }}}[/tex]
The correct answer is option B.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Salamat sa pagbisita sa aming plataporma. Umaasa kaming nahanap mo ang mga sagot na hinahanap mo. Bumalik ka anumang oras na kailangan mo ng karagdagang impormasyon. Salamat sa pagbisita. Ang aming layunin ay magbigay ng pinaka-tumpak na mga sagot para sa lahat ng iyong pangangailangan sa impormasyon. Bumalik kaagad. Imhr.ca, ang iyong go-to na site para sa mga tamang sagot. Huwag kalimutang bumalik para sa higit pang kaalaman.