Answer:
To solve this problem, we need to substitute the given equations into the final equation and simplify it.
Given equations:
X + Y = W
Z = W - 1
X = (Y - 2)^2
W + X = 67
W - X = 24 - 1
Substituting the equations into the final equation, we get:
(Z + W - Y + X) × 4 ÷ 2 =?
First, let's substitute the values of X and W from the given equations:
X = (Y - 2)^2
W + X = 67
W - X = 24 - 1
Substituting X into the first equation, we get:
W + (Y - 2)^2 = 67
W - (Y - 2)^2 = 24 - 1
Simplifying the equations, we get:
W + (Y - 2)^2 = 67
W - (Y - 2)^2 = 23
Now, let's substitute the values of W and X into the final equation:
(Z + W - Y + X) × 4 ÷ 2 =?
Substituting W and X, we get:
(Z + (W + (Y - 2)^2) - Y + (Y - 2)^2) × 4 ÷ 2 =?
Simplifying the equation, we get:
(Z + (W + (Y - 2)^2) - Y + (Y - 2)^2) × 4 ÷ 2 =?
This simplifies to:
(Z + (W + (Y - 2)^2) - Y + (Y - 2)^2) × 2 =?
Therefore, the simplified form of the final equation is:
(Z + (W + (Y - 2)^2) - Y + (Y - 2)^2) × 2 =?