Makakuha ng pinakamahusay na mga solusyon sa lahat ng iyong mga katanungan sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Nagbibigay ang aming Q&A platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang network ng mga bihasang propesyonal. Kumonekta sa isang komunidad ng mga eksperto na handang magbigay ng eksaktong solusyon sa iyong mga tanong nang mabilis at eksakto.

Seven consecutive odd integers have a sum of 441. Find the highest integer.

A. 63
B. 65
C. 67
D. 69
E. 71​

Sagot :

Answer:

To determine the highest integer among seven consecutive odd integers whose sum is 441, we first define the sequence. Let the middle integer of the sequence be ( x ). Since we are dealing with seven consecutive odd integers, the sequence can be written as:

[x-6, x-4, x-2, x, x+2, x+4, x+6]

Next, we sum these integers:

[(x-6) + (x-4) + (x-2) + x + (x+2) + (x+4) + (x+6)]

Combining the terms, we get:

[(x-6) + (x-4) + (x-2) + x + (x+2) + (x+4) + (x+6) = 7x]

Given that the sum is 441, we set up the equation:

[7x = 441]

Solving for \( x \):

[x = \frac{441}{7} = 63]

Now, since \( x \) is the middle integer in the sequence, the highest integer is:

[x + 6 = 63 + 6 = 69]

Therefore, the highest integer is D. 69

Umaasa kaming naging kapaki-pakinabang ang aming mga sagot. Bumalik anumang oras para sa karagdagang impormasyon at mga sagot sa iba pang mga tanong na mayroon ka. Pinahahalagahan namin ang iyong oras. Mangyaring bumalik muli para sa higit pang maaasahang mga sagot sa anumang mga tanong na mayroon ka. Maraming salamat sa pagbisita sa Imhr.ca. Balik-balikan kami para sa pinakabagong mga sagot at impormasyon.