Answered

Makakuha ng pinakamahusay na mga solusyon sa lahat ng iyong mga katanungan sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Kumuha ng mga sagot na kailangan mo nang mabilis at eksakto mula sa dedikadong komunidad ng mga eksperto sa aming platform. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang malawak na network ng mga propesyonal.

Directions: Find the exact values of the following expressions:
2. [tex] \: \frac{5 { \sin}^{2} {30}^{ \circ} + { \cos}^{2}{45}^{ \circ} + 4 { \tan}^{2} {60}^{ \circ} }{2 \sin {30}^{ \circ} \cos {45}^{ \circ} + \tan {45}^{ \circ} } [/tex]​

Sagot :

[tex]\underline{\underline{\large{\red{\mathcal{✒GIVEN:}}}}}[/tex]

[tex]\bullet \: \: \rm{ \frac{5 { \sin}^{2} {30}^{ \circ} + { \cos}^{2}{45}^{ \circ} + 4 { \tan}^{2} {60}^{ \circ} }{2 \sin {30}^{ \circ} \cos {45}^{ \circ} + \tan {45}^{ \circ} }}[/tex]

[tex]\underline{\underline{\large{\red{\mathcal{REQUIRED:}}}}}[/tex]

Find the exact value.

[tex]\underline{\underline{\large{\red{\mathcal{SOLUTION:}}}}}[/tex]

Remember the six trigonometric ratios for [tex]\tt{\purple{special \: angles}}[/tex] [tex]\tt{{45}^{ \circ} , {30}^{ \circ} \: and \: {60}^{ \circ}}[/tex]:

[tex]\small{\boxed{ \bm{{ \red{ \sin {30}^{ \circ} = \dfrac{1}{2} }}}}}[/tex]

[tex]\small{\boxed{ \bm{{ \red{ \cos {45}^{ \circ} = \dfrac{ \sqrt{2} }{2} }}}}}[/tex]

[tex]\small{\boxed{ \bm{{ \red{ \tan {60}^{ \circ} = \sqrt{3} }}}}}[/tex]

[tex]\small{\boxed{ \bm{{ \red{ \tan {45}^{ \circ} = \sqrt{1} }}}}}[/tex]

Now, we substitute those values:

[tex]\small{\tt{ \frac{5( \frac{1}{2} {)}^{2} + ( \frac{ \sqrt{2} }{2} {)}^{2} + 4( \sqrt{3} {)}^{2} }{2 (\frac{1}{2}) ( \frac{ \sqrt{2} }{2} ) + 1} = \frac{ \frac{5}{4} + \frac{2}{4} + 12 }{ \frac{ \sqrt{2} }{2} + 1} }}[/tex]

[tex]\tt{ \frac{ \frac{7}{4} + 12}{ \frac{ \sqrt{2} + 2}{2} } = \frac{ \frac{7 + 48}{4} }{ \frac{ \sqrt{2} + 2}{2} } \div \frac{ \sqrt{2} + 2}{2} }[/tex]

[tex]\tt{ \dfrac{55(2)}{4( \sqrt{2} + 2)}}[/tex]

Simplify:

[tex]\large{\tt{\purple{ \dfrac{55}{2 \sqrt{2} + 4} }}}[/tex]

Final Answer:

[tex]\tt{\therefore}[/tex] The exact value is [tex]\large{\rm{\purple{ \dfrac{55}{2 \sqrt{2} + 4} }}}[/tex].