Ang Imhr.ca ay narito upang tulungan kang makahanap ng mga sagot sa lahat ng iyong mga katanungan mula sa mga eksperto. Sumali sa aming platform upang kumonekta sa mga eksperto na handang magbigay ng detalyadong sagot sa iyong mga tanong sa iba't ibang larangan. Kumonekta sa isang komunidad ng mga eksperto na handang magbigay ng eksaktong solusyon sa iyong mga tanong nang mabilis at eksakto.

integrate this definite integral \[
\int_{1}^{3} \frac{2^{\log_3 (x^3 + 2x^2)}}{x \cdot 4^{\log_3 \sqrt{x+2}}} \, dx
\]

down below is the hint on how to solve it:

Integrate This Definite Integral Int13 Frac2log3 X3 2x2x Cdot 4log3 Sqrtx2 Dx Down Below Is The Hint On How To Solve It class=

Sagot :

zju

Use the hint to express the integral as shown below.

[tex]\begin{gathered} \int_{1}^{3} \frac{2^{\log_3 (x^3 + 2x^2)}}{x \cdot 4^{\log_3 \sqrt{x+2}}} \, dx = \int_{1}^{3} \frac{(x^3 + 2x^2)^{\log_3 2}}{x \cdot (\sqrt{x+2})^{\log_3 4}} \, dx \end{gathered}[/tex]

Remember that log₃(4) = 2log₃(2) and use the power of a power law of exponent to turn the latter integral as below.

[tex]\begin{gathered}\int_{1}^{3} \frac{(x^3 + 2x^2)^{\log_3 2}}{x \cdot (\sqrt{x+2})^{\log_3 4}} \, dx = \int_{1}^{3} \frac{1}{x}\left(\frac{x^3 + 2x^2}{(\sqrt{x+2})^{2}} \right)^{\log_3 2} \, dx \end{gathered}[/tex]

You can do the rest. I am sure you know how to simplify the fraction inside the parentheses. You should be able to get:

[tex]\begin{gathered} \int_{1}^{3} \frac{x^{2\log _3 2}}{x} \, dx = \int_{1}^{3} x^{\log _3 4-1}\, dx = \left.\frac{x^{\log _3 4}}{\log _3 4}\right|_{1}^{3}\end{gathered}[/tex]

This simplifies to 3/log₃(4) = log(27)/log(4).

Salamat sa pagpunta. Nagsusumikap kaming magbigay ng pinakamahusay na mga sagot para sa lahat ng iyong mga katanungan. Kita tayo muli sa susunod. Umaasa kaming nahanap mo ang hinahanap mo. Huwag mag-atubiling bumalik sa amin para sa higit pang mga sagot at napapanahong impormasyon. Maraming salamat sa pagtiwala sa Imhr.ca. Bisitahin kami ulit para sa mga bagong sagot mula sa mga eksperto.