Maligayang pagdating sa Imhr.ca, kung saan maaari kang makakuha ng mga sagot mula sa mga eksperto. Maghanap ng mapagkakatiwalaang sagot sa iyong mga tanong mula sa malawak na komunidad ng mga eksperto sa aming madaling gamitin na platform. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang malawak na network ng mga propesyonal.

An automobile tire volume of 0. 6m3 is inflated to a gauge pressure of 200kPa. Calculate the mass of air in the tire if the temperature is 20°C.

Sagot :

Answer:

2.148kg

Explanation:

To calculate the mass of air in the tire, we'll use the ideal gas law, which relates pressure, volume, temperature, and the gas constant. Here’s how we can proceed:

Given data:

- Volume of the tire \( V = 0.6 \text{ m}^3 \)

- Gauge pressure \( P_{\text{gauge}} = 200 \text{ kPa} \)

- Temperature \( T = 20^\circ \text{C} = 20 + 273.15 \text{ K} = 293.15 \text{ K} \)

Firstly, convert the gauge pressure to absolute pressure:

\[ P_{\text{absolute}} = P_{\text{gauge}} + P_{\text{atm}} \]

Assuming standard atmospheric pressure (\( P_{\text{atm}} \)) is approximately \( 101.325 \) kPa:

\[ P_{\text{absolute}} = 200 \text{ kPa} + 101.325 \text{ kPa} = 301.325 \text{ kPa} \]

Now, use the ideal gas law:

\[ PV = nRT \]

Where:

- \( P \) is the absolute pressure (in Pa),

- \( V \) is the volume of the tire (in m\(^3\)),

- \( n \) is the number of moles of gas,

- \( R \) is the universal gas constant (\( 8.314 \text{ J/(mol·K)} \)),

- \( T \) is the temperature in Kelvin.

First, calculate the number of moles of air \( n \):

\[ n = \frac{P V}{R T} \]

Convert the pressure \( P \) to Pa:

\[ P = 301.325 \times 10^3 \text{ Pa} \]

Now, substitute the values:

\[ n = \frac{301.325 \times 10^3 \text{ Pa} \times 0.6 \text{ m}^3}{8.314 \text{ J/(mol·K)} \times 293.15 \text{ K}} \]

Calculate \( n \):

\[ n \approx \frac{180.795 \times 10^3 \text{ m}^3\text{·Pa}}{2437.2 \text{ J/K}} \]

\[ n \approx 74.2 \text{ moles} \]

Finally, calculate the mass of air \( m \):

\[ m = n \times M \]

Where \( M \) is the molar mass of air (approximately \( 28.97 \text{ g/mol} \)):

\[ m \approx 74.2 \text{ moles} \times 28.97 \text{ g/mol} \]

\[ m \approx 2148 \text{ g} \]

Therefore, the mass of air in the tire is approximately \( 2148 \) grams, or \( 2.148 \) kilograms.