Makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga katanungan sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Kumuha ng mga sagot na kailangan mo nang mabilis at eksakto mula sa dedikadong komunidad ng mga eksperto sa aming platform. Kumuha ng agarang at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming platform.

For sand, the maximum and minimum possible void ratios were determined in the laboratory to be 0.94 and 0.33, respectively. (a) Find the in-situ moist unit weight of the sand in kN/m3 compacted in the field at a relative density of 60%. The specific gravity of the sand is 2.65 and its in-situ moisture content is 10%. (b) Calculate the maximum and minimum dry unit weight in kN/m that the sand can have.

Sagot :

Answer:

(a) To find the in-situ moist unit weight of the sand, we can use the following equation:

\[

\gamma = (1 + e) \times \frac{\gamma_w \times G}{1 + w}

\]

where:

\(\gamma\) = in-situ moist unit weight of the sand (kN/m³)

\(e\) = void ratio

\(\gamma_w\) = unit weight of water (9.81 kN/m³)

\(G\) = specific gravity of the sand

\(w\) = moisture content

Given:

\(e = 1 - \frac{D_r}{D_{r \text{ max}}} = 1 - \frac{60}{100} = 0.4\)

\(G = 2.65\)

\(w = 0.10\)

Substitute the values into the formula:

\[

\gamma = (1 + 0.4) \times \frac{9.81 \times 2.65}{1 + 0.1} = 1.4 \times \frac{9.81 \times 2.65}{1.1} = 21.09 \, \text{kN/m³}

\]

So, the in-situ moist unit weight of the sand is 21.09 kN/m³.

(b) To calculate the maximum and minimum dry unit weight, we use the formula:

\[

\text{Maximum dry unit weight} = \frac{G}{1 + e_{\text{min}}} \times \gamma_w

\]

\[

\text{Minimum dry unit weight} = \frac{G}{1 + e_{\text{max}}} \times \gamma_w

\]

Given:

\(e_{\text{max}} = 0.94\)

\(e_{\text{min}} = 0.33\)

Calculate:

\[

\text{Maximum dry unit weight} = \frac{2.65}{1 + 0.33} \times 9.81 = \frac{2.65}{1.33} \times 9.81 = 19.72 \, \text{kN/m³}

\]

\[

\text{Minimum dry unit weight} = \frac{2.65}{1 + 0.94} \times 9.81 = \frac{2.65}{1.94} \times 9.81 = 13.36 \, \text{kN/m³}

\]

Therefore, the maximum dry unit weight that the sand can have is 19.72 kN/m³, and the minimum dry unit weight that the sand can have is 13.36 kN/m³.