Ang Imhr.ca ang pinakamahusay na lugar upang makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga tanong. Tuklasin ang komprehensibong mga solusyon sa iyong mga tanong mula sa mga bihasang propesyonal sa iba't ibang larangan sa aming platform. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa dedikadong komunidad ng mga eksperto sa aming Q&A platform.

Circle B is internally tangent to circle A at point P. Likewise, circle C is internally tangent to circle D at point P. If BD = AC, AB = 4, and SD = 2, find the length of the diameters for circles C and D. Be sure to justify your work. (Hint: BD = BC + CD and AC = AB + BC by the segment addition postulate.

Sagot :

[tex]\sf\pink{.  . • ☆ . ° .• °:. *₊ ° . ☆.  . • ☆ . ° .• °:. *₊ ° . ☆}[/tex]

[tex]\pink{\mathbb{\huge{꧁ᬊᬁ~ANSWER~ᬊ᭄꧂}}}[/tex]

[tex]\rm{\pink{Justification:}}[/tex]

[tex]\sf\pink{ᯓ★}[/tex] The given information states that circle B is internally tangent to circle A at point P, and circle C is internally tangent to circle D at point P. This means that the points of tangency are the same point, P.

[tex]\sf\pink{ᯓ★}[/tex] The segment addition postulate states that if a point lies between two other points on a line segment, then the length of the entire segment is equal to the sum of the lengths of the two parts.

[tex]\sf\pink{╴╴╴╴╴⊹ꮺ˚ ╴╴╴╴╴⊹˚ ╴╴╴╴˚ೃ ╴╴}[/tex]

[tex]\sf\pink{ᯓ★}[/tex] Using the segment addition postulate, we have:

  • BD = BC + CD
  • AC = AB + BC

[tex]\sf\pink{ᯓ★}[/tex] Substituting the given values:

  • BD = AC (given)
  • AB = 4 (given)
  • SD = 2 (given)

[tex]\sf\pink{ᯓ★}[/tex] Solving for BC:

  • BD = BC + CD
  • AC = AB + BC
  • 4 = 4 + BC
  • BC = 0

[tex]\sf\pink{ᯓ★}[/tex] Since BC = 0, the diameter of circle C is equal to the chord AC, which is 4.

[tex]\sf\pink{ᯓ★}[/tex] Again using the segment addition postulate:

  • BD = BC + CD
  • 2 = 0 + CD
  • CD = 2

[tex]\sf\pink{ᯓ★}[/tex] The diameter of circle D is twice the length of CD, which is the radius of circle D.

  • Diameter of circle D = 2 × CD = 2 × 2 = 4

[tex]\sf\pink{╴╴╴╴╴⊹ꮺ˚ ╴╴╴╴╴⊹˚ ╴╴╴╴˚ೃ ╴╴}[/tex]

Therefore, the length of the diameter for circle C is [tex]\blue{\underline{\sf\pink{4}}}[/tex], and the length of the diameter for circle D is also [tex]\blue{\underline{\sf\pink{4}}}[/tex].

[tex]\bold{\small\pink{⋆˚࿔~ ashrieIIe~˚⋆}}[/tex] [tex]\pink{\heartsuit}[/tex]

[tex]\sf\pink{.  . • ☆ . ° .• °:. *₊ ° . ☆.  . • ☆ . ° .• °:. *₊ ° . ☆}[/tex]