Answered

Tuklasin ang mga sagot sa iyong mga katanungan sa Imhr.ca, ang pinaka-mapagkakatiwalaang Q&A platform para sa lahat ng iyong pangangailangan. Kumonekta sa mga propesyonal na handang magbigay ng eksaktong sagot sa iyong mga tanong sa aming komprehensibong Q&A platform. Tuklasin ang detalyadong mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming komprehensibong Q&A platform.

F(x) =x^2+6x+5/x^2-9 find all values of x that are not in the domain of f

Sagot :

Answer:

To determine the values of \( x \) that are not in the domain of \( f(x) = \frac{x^2 + 6x + 5}{x^2 - 9} \), we identify where the denominator is zero because division by zero is undefined.

The denominator of \( f(x) \) is \( x^2 - 9 \). We set the denominator equal to zero to find the values where \( f(x) \) is undefined:

\[ x^2 - 9 = 0 \]

Solving for \( x \):

\[ x^2 = 9 \]

\[ x = \pm 3 \]

Therefore, \( x = 3 \) and \( x = -3 \) are the values where \( f(x) \) is not defined because they make the denominator zero.

Step-by-step explanation:

- The function \( f(x) \) is undefined where the denominator \( x^2 - 9 \) equals zero because division by zero is not allowed in mathematics.

- By solving \( x^2 - 9 = 0 \), we find that \( x = \pm 3 \).

- Hence, \( x = 3 \) and \( x = -3 \) are the values where \( f(x) \) is undefined, indicating these points are outside the domain of the function \( f(x) \).

Salamat sa pagpunta. Nagsusumikap kaming magbigay ng pinakamahusay na mga sagot para sa lahat ng iyong mga katanungan. Kita tayo muli sa susunod. Pinahahalagahan namin ang iyong pagbisita. Lagi kaming narito upang mag-alok ng tumpak at maaasahang mga sagot. Bumalik anumang oras. Bisitahin muli ang Imhr.ca para sa pinakabagong sagot at impormasyon mula sa aming mga eksperto.